首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural selection operates both directly, via the impact of a trait upon the individual's own fitness, and indirectly, via the impact of the trait upon the fitness of the individual's genetically related social partners. These effects are often framed in terms of Hamilton's rule, rb - c > 0, which provides the central result of social-evolution theory. However, a number of studies have questioned the generality of Hamilton's rule, suggesting that it requires restrictive assumptions. Here, we use Fisher's genetical paradigm to demonstrate the generality of Hamilton's rule and to clarify links between different studies. We show that confusion has arisen owing to researchers misidentifying model parameters with the b and c terms in Hamilton's rule, and misidentifying measures of genotypic similarity or genealogical relationship with the coefficient of genetic relatedness, r. More generally, we emphasize the need to distinguish between general kin-selection theory that forms the foundations of social evolution, and streamlined kin-selection methodology that is used to solve specific problems.  相似文献   

2.
Over the last half century, comparative genomics has increasingly contributed to the definition, resolution and interpretation of human evolution. Early comparisons demonstrated that African apes and humans were more closely related and diverged later than commonly thought. However, it was difficult to determine the branching between humans, chimpanzees and gorillas. By the 1990s, sufficient biomolecular data had accumulated to demonstrate that chimpanzees and humans shared a common ancestor after the divergence of the gorilla. Current reconstructions place the divergence of humans and chimpanzees at 6–8 million years. Comparative genomics from complete genome sequencing to chromosome painting provide a scenario for the origin of the human genome. Starting form the ancestral mammalian karyotype, we can determine the major steps over the last 90 million years leading to the formation of each human chromosome. Despite considerable technical problems, studies of ancient DNA now provide a direct genetic witness of human evolution and add a temporal dimension to reconstructions of our evolutionary history and phylogeny. Ancient DNA has shown that Neanderthals probably did not interbreed with anatomically modern humans and did not make a significant contribution to the gene pool of our species. Ancient DNA has also contributed to the studies of the colonization of the Americas and the Pacific Island, and the domestication of plants and animals. Understanding the genetic basis of the physical and behavioral traits that distinguish humans from other primates presents one of the great future challenges of science.  相似文献   

3.
反萼银莲花的核型分析   总被引:1,自引:0,他引:1  
张跃进  张小燕  吴金山   《广西植物》1991,11(2):149-152
本文报道反萼银莲花的染色体数目及核型。其核型公式为K(2n)=6m+4sm(1SAT)+4st(1SAT)+2t,按照Stebbins的核型对称性分类标准应属于“2A”型。同时对本属的进化等问题也作了初步讨论。  相似文献   

4.
Frans de Waal’s view that empathy is at the basis of morality directly seems to build on Darwin, who considered sympathy as the crucial instinct. Yet when we look closer, their understanding of the central social instinct differs considerably. De Waal sees our deeply ingrained tendency to sympathize (or rather: empathize) with others as the good side of our morally dualistic nature. For Darwin, sympathizing was not the whole story of the “workings of sympathy”; the (selfish) need to receive sympathy played just as central a role in the complex roads from sympathy to morality. Darwin’s understanding of sympathy stems from Adam Smith, who argued that the presence of morally impure motives should not be a reason for cynicism about morality. I suggest that De Waal’s approach could benefit from a more thorough alignment with the analysis of the workings of sympathy in the work of Darwin and Adam Smith.  相似文献   

5.
6.
Evolution of symbiotic bacteria in the distal human intestine   总被引:5,自引:0,他引:5  
The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.  相似文献   

7.
This paper and the next member of the series, deal with genetical mechanisms responsible for the evolution of eusociality (a level of social organization that includes differentiated sterile castes) among the “social” insects. Eusociality has evolved in a number of different species. Two different types of genetic systems are represented among these species: diplodiploidy (both sexes diploid) and haplodiploidy (haploid males and diploid females). The present paper examines the evolution of a sterile caste system in the context of diplodiploidy, and the next paper considers the evolution of eusociality in the context of haplodiploidy.The present study demonstrates that if the sterile diploid caste members are related to the reproductive members of the group, eusociality can evolve. This is true because the caste associate gene effects are included in the function determining gene frequency change (i.e. Δpi). Also, since the caste gene effects are expressed only through the associate dimension of gene activity, they can cause morphological and behavioral adaptations to occur which are peculiar to the caste members, and need not be expressed in the reproducing members of the group. Thus caste differentiation is possible.  相似文献   

8.
Language is a defining characteristic of our species that has emerged quite recently on an evolutionary timescale. Understanding the neurobiological substrates and genetic underpinnings of language constitutes a basic challenge for both neuroscience and genetics. The functional localization of language in the brain has been progressively refined over the last century through studies of aphasics and more recently through neuroimaging. Concurrently, structural specializations in these brain regions have been identified by virtue of their lateralization in humans and also through comparisons with homologous brain regions in non-human primate species. Comparative genomics has revealed the genome of our closest living relative, the chimpanzee, to be astonishingly similar to our own. To explore the role that changes in the regulation of gene expression have had in recent human evolution, several groups have used microarrays to compare expression levels for thousands of genes in the brain between humans and chimpanzees. By applying this approach to the increasingly refined peri-sylvian network of brain regions involved in language, it may be possible to discern functionally significant changes in gene expression that are universal among humans but unique to our species, thus casting light on the molecular basis of language in the brain.  相似文献   

9.
Conventional wisdom has it that evolution makes a sham of morality, even if morality is an adaptation. I disagree. I argue that our best current adaptationist theory of meaning offers objective truth conditionsfor signaling systems of all sorts. The objectivity is, however, relative to species – specifically to the adaptive history of the signaling system in question. While evolution may not provide the kind of species independent objective standards that (e.g.) Kantians desire, this should be enough for the practical work of justifying our confidence in the objectivity of moral standards. If you believe morality is an adaptation, you should be a moral realist.  相似文献   

10.
Language is a defining characteristic of our species that has emerged quite recently on an evolutionary timescale. Understanding the neurobiological substrates and genetic underpinnings of language constitutes a basic challenge for both neuroscience and genetics. The functional localization of language in the brain has been progressively refined over the last century through studies of aphasics and more recently through neuroimaging. Concurrently, structural specializations in these brain regions have been identified by virtue of their lateralization in humans and also through comparisons with homologous brain regions in non-human primate species. Comparative genomics has revealed the genome of our closest living relative, the chimpanzee, to be astonishingly similar to our own. To explore the role that changes in the regulation of gene expression have had in recent human evolution, several groups have used microarrays to compare expression levels for thousands of genes in the brain between humans and chimpanzees. By applying this approach to the increasingly refined peri-sylvian network of brain regions involved in language, it may be possible to discern functionally significant changes in gene expression that are universal among humans but unique to our species, thus casting light on the molecular basis of language in the brain.  相似文献   

11.
This paper reports chromosome number and karyotype analysis of Cycas panzhihuaensis endemic to China. The material was collected from Dukou, Sichuan. It is a diploid species, with 2n=22=2m+4sm+4st+l2t. The karyotype of Cycas panzhihuaensis is different from that of the other species of the genus Cycas, which was known to be 2n=4m+8st+10t. The former is a new karyotype in the genus. The authors briefly discuss karyotype evolution of the genus Cycas in this papar.  相似文献   

12.
The genetic variation at two marker loci in three populations of the monogynous ant Lasius niger was used to analyze the importance of relatedness structure to sex-investment ratios in sexuals produced by colonies living in different resource conditions. From a resource-rich monoculture to a population in a resource-limited environment, dry weight investment in queens decreased from female-biased (0.76) to equality with male investment (Boomsma et al., 1982). The investment ratios in sexuals expected from the estimated relatedness ratios, resulting from kin-selection theory (Trivers and Hare, 1976), were in good agreement with the observed ratios in all populations. This indicated that the workers can capitalize on the asymmetry in relatedness, opposing the queen's interest, despite the contrast in environmental conditions in the different populations. This asymmetry, however, almost disappeared in the marginal population, due to a high frequency of double mating and worker production of males, resulting in a much reduced queen-worker conflict. We suggest that different levels of polyandry might be favored at different points of the resource gradient, with the sex ratio secondarily depending on these polyandry levels. As there was no population subdivision or spatial structure within the populations, group-selection and local-mate-competition models cannot account for the observed female-biased ratios, whereas they were rather accurately predicted by kin-selection theory.  相似文献   

13.
A familiar position regarding the evolution of ethics is that biology can explain the origin of morals but that in doing so it removes the possibility of their having objective justification. This position is set fourth in detail in the writings of Michael Ruse (1986, 1987, 1989, 1990a, 1990b) but it is also taken by many others, notably, Jeffrie Murphy (1982), Andrew Oldenquist (1990), and Allan Gibbard (1990), I argue the contrary view that biology provides a justification of the existence of morals which is objective in the sense of being independent of people's moral views and their particular desires and preferences. Ironically, my argument builds on the very premises which are supposed to undermine the objectivity of morals. But my argument stops short of claiming that biology can give us a basis for justifying some particular system of morals. Drawing on an analogy with social contract theory, I offer a general reason why this more ambitious project cannot be expected to succeed if the argument is pursued along the same lines. Finally, I give reasons why the possibility of objective justification for a particular morality cannot be ruled out in general on evolutionary grounds.  相似文献   

14.
In order to understand the genetic basis for the evolutionary success of modern humans, it is necessary to compare their genetic makeup to that of closely related species. Unfortunately, our closest living relatives, the chimpanzees, are evolutionarily quite distant. With the advent of ancient DNA study and more recently paleogenomics - the study of the genomes of ancient organisms - it has become possible to compare human genomes to those of much more closely related groups. Our closest known relatives are the Neanderthals, which evolved and lived in Europe and Western Asia, from about 600,000 years ago until their disappearance around 30,000 years ago following the expansion of anatomically modern humans into their range. The closely related Denisovans are only known by virtue of their DNA, which has been extracted from bone fragments dating around 30,000 to 50,000 years ago found in a single Siberian cave. Analyses of Neanderthal and Denisovan nuclear and mitochondrial genomes have revealed surprising insights into these archaic humans as well as our own species. The genomes provide a preliminary catalogue of derived amino acids that are specific to all extant modern humans, thus offering insights into the functional differences between the three lineages. In addition, the genomes provide evidence of gene flow between the three lineages after anatomically modern humans left Africa, drastically changing our view of human evolution.  相似文献   

15.
Portin P 《Hereditas》2008,145(3):113-125
In the first part of this review the evolutionary history and genomics of the human species were considered in the light of molecular genetic evidence. In this second part the emphasis will be put on the regulation of the function of the genes and evolution of the human-specific traits such as enormously large brains and the capacity to communicate with a spoken language. The age-old question of what specifically makes us humans is also dealt with in its new lightning of molecular genetics of the genome era. It is concluded that, in addition to the structural differences of the genomes, it is most likely that it is different pattern of the regulation of the function of the genes, which evolved for most part through positive natural and sexual selection where the growth and the structure of the human population played a significant role, that differentiates us from our closest living relatives. In this process of the evolution of the most human-specific characteristics, like the size of brains, specifically that or the neocortex, and ability to speak, interbreeding with other forms of the Homo-genus may have played a role. In addition to the role of positive selection in general in the evolution of different human-specific traits, it is evident that this progressive selection has been quite effective, thus leading to accelerated evolution of these traits. Finally it can also be concluded that genetic and cultural evolution have gone hand in hand during the recent, and still continuing, evolution of the mankind interacting with each others in a bidirectional fashion.  相似文献   

16.
Group-living typically provides benefits to individual group members but also confers costs. To avoid incredulity and betrayal and allow trust and cooperation, individuals must understand the intentions and emotions of their group members. Humans attend to other''s eyes and from gaze and pupil-size cues, infer information about the state of mind of the observed. In humans, pupil-size tends to mimic that of the observed. Here we tested whether pupil-mimicry exists in our closest relative, the chimpanzee (P. troglodytes). We conjectured that if pupil-mimicry has adaptive value, e.g. to promote swift communication of inner states and facilitate shared understanding and coordination, pupil-mimicry should emerge within but not across species. Pupillometry data was collected from human and chimpanzee subjects while they observed images of the eyes of both species with dilating/constricting pupils. Both species showed enhanced pupil-mimicry with members of their own species, with effects being strongest in humans and chimpanzee mothers. Pupil-mimicry may be deeply-rooted, but probably gained importance from the point in human evolution where the morphology of our eyes became more prominent. Humans'' white sclera surrounding the iris, and the fine muscles around their eyes facilitate non-verbal communication via eye signals.  相似文献   

17.
18.
Recent genomic projects reveal that about half of the gene repertoire in plant genomes is made up by multigene families. In this paper, a set of structural and phylogenetic analyses have been applied to compare the differently sized nicotianamine synthase (NAS) gene families in barley and rice. Nicotianamine acts as a chelator of iron and other heavy metals and plays a key role in uptake, phloem transport and cytoplasmic distribution of iron, challenging efforts for the breeding of iron-efficient crop plants. Nine barley NAS genes have been mapped, and co-linearity of flanking genes in barley and rice was determined. The combined analyses reveal that the NAS multigene family members in barley originated through at least one duplication event that occurred before the divergence of rice and barley. Additional duplications appear to have occurred within each of the species. Although we detected no evidence for positive selection of recently duplicated genes within species, codon-based tests revealed evidence for positive selection having contributed to the divergence of some amino acids. The integrated comparative and phylogenetic analysis improved our current view of NAS gene family evolution, might facilitate the functional characterization of individual members and is applicable to other multigene families. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

19.
The centromere is a cytologically defined entity that possesses a conserved and restricted function in the cell: it is the site of kinetochore assembly and spindle attachment. Despite its conserved function, the centromere is a highly mutable portion of the chromosome, carrying little sequence conservation across taxa. This divergence has made studying the movement of a centromere, either within a single karyotype or between species, a challenging endeavor. Several hypotheses have been proposed to explain the permutability of centromere location within a chromosome. This permutability is termed "centromere repositioning" when described in an evolutionary context and "neocentromerization" when abnormalities within an individual karyotype are considered. Both are characterized by a shift in location of the functional centromere within a chromosome without a concomitant change in linear gene order. Evolutionary studies across lineages clearly indicate that centromere repositioning is not a rare event in karyotypic evolution and must be considered when examining the evolution of chromosome structure and syntenic order. This paper examines the theories proposed to explain centromere repositioning in mammals. These theories are interpreted in light of evidence gained in human studies and in our presented data from the marsupial model species Macropus eugenii, the tammar wallaby.  相似文献   

20.
Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum. Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号