首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrated previously that local, intra-articular injection of an adenoviral vector expressing human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a rabbit knee model of inflammatory arthritis stimulated synovial apoptosis and reduced inflammation. To examine whether intra-articular injection of recombinant chimeric human TRAIL protein (rTRAIL) also induces apoptosis of proliferating rabbit synovium and reduces inflammation, we used an experimental rabbit arthritis model of rheumatoid arthritis, induced by intra-articular introduction of allogeneic fibroblasts genetically engineered to secrete human IL-1beta. Analysis of synovium isolated from the rabbits treated with intra-articular injection of rTRAIL, relative to saline control, showed areas of extensive acellular debris and large fibrous regions devoid of intact cells, similar to adenoviral mediated TRAIL gene transfer. Extensive apoptosis of the synovial lining was demonstrated using TUNEL analysis of the sections, corresponding to the microscopic findings in hematoxylin and eosin staining. In addition, leukocyte infiltration into the synovial fluid of the inflamed knee joints following rTRAIL treatment was reduced more than 50% compared with the saline control. Analysis of the glycosaminoglycan synthetic rate by cultured cartilage using radiolabeled sulfur and cartilage histology demonstrated that rTRAIL did not adversely affect cartilage metabolism and structure. Analysis of serum alanine aminotransferase showed that intra-articular injection of rTRAIL did not have adverse effects on hepatic function. These results demonstrate that intra-articular injection of rTRAIL could be therapeutic for treating pathologies associated with rheumatoid arthritis.  相似文献   

2.
To examine the effect of transforming growth factor (TGF)-β1 on the regulation of cartilage synthesis and other articular pathologies, we used adenovirus-mediated intra-articular gene transfer of TGF-β1 to both naïve and arthritic rabbit knee joints. Increasing doses of adenoviral vector expressing TGF-β1 were injected into normal and antigen-induced arthritis rabbit knee joints through the patellar tendon, with the same doses of an adenoviral vector expressing luciferase injected into the contralateral knees as the control. Intra-articular injection of adenoviral vector expressing TGF-β1 into the rabbit knee resulted in dose-dependent TGF-β1 expression in the synovial fluid. Intra-articular TGF-β1 expression in both naïve and arthritic rabbit knee joints resulted in significant pathological changes in the rabbit knee as well as in adjacent muscle tissue. The observed changes induced by elevated TGF-β1 included inhibition of white blood cell infiltration, stimulation of glycosaminoglycan release and nitric oxide production, and induction of fibrogenesis and muscle edema. In addition, induction of chondrogenesis within the synovial lining was observed. These results suggest that even though TGF-β1 may have anti-inflammatory properties, it is unable to stimulate repair of damaged cartilage, even stimulating cartilage degradation. Gene transfer of TGF-β1 to the synovium is thus not suitable for treating intra-articular pathologies.  相似文献   

3.
Surgical synovectomy to remove the inflammatory synovium can temporarily ameliorate rheumatoid inflammation and delay the progress of joint destruction. An efficient medically induced programmed cell death (apoptosis) in the rheumatoid synovium might play a role similar to synovectomy but without surgical tissue damage. Gene transfer of Fas ligand (FasL) has increased the frequency of apoptotic cells in mouse and rabbit arthritic synovium. In this study, we investigated whether repeated FasL gene transfer could remove human inflammatory synovial tissue in situ and function as a molecular synovectomy. Briefly, specimens of human synovium from joint replacement surgeries and synovectomies of rheumatoid arthritis (RA) patients were grafted subcutaneously into male C.B-17 severe combined immunodeficiency (SCID) mice. Injections of a recombinant FasL adenovirus (Ad-FasL) into the grafted synovial tissue at the dosage of 10(11) particles per mouse were performed every two weeks. Three days after the fifth virus injection, the mice were euthanized by CO2 inhalation and the human synovial tissues were collected, weighed and further examined. Compared to the control adenovirus-LacZ (Ad-LacZ) and phosphate buffered saline (PBS) injected RA synovium, the Ad-FasL injected RA synovium was dramatically reduced in size and weight (P < 0.005). The number of both synoviocytes & mononuclear cells was significantly reduced. Interestingly, an approximate 15-fold increased frequency of apoptotic cells was observed in RA synovium three days after Ad-FasL injection, compared with control tissues. In summary, our in vivo investigation of gene transfer to human synovium in SCID mice suggests that repeated intra-articular gene transfer of an apoptosis inducer, such as FasL, may function as a 'gene scalpel' for molecular synovectomy to arrest inflammatory synovium at an early stage of RA.  相似文献   

4.
Bone morphogenetic protein-7 (BMP-7) regulates cartilage metabolism and promotes matrix synthesis. However, the effect of BMP-7 on inflammatory arthritis remains unknown. We investigated the effect and mechanism of exogenous BMP-7 on cartilage and synovium in vivo in rat zymosan-induced arthritis. Zymosan was injected into the left knees of Wistar rats. Phosphate-buffered saline or BMP-7 at 10, 100, or 1000 ng per joint was injected into the left knee every 2 days. Normal joints acted as normal controls. The knee joints were analyzed histologically and immunohistologically at 14 days. Joint swelling was evaluated by measuring the transverse diameter of the knee joints. Synovial lysates were collected, and the concentrations of interleukin-1β (IL-1β), IL-6, and IL-10 were measured by enzyme-linked immunosorbent assay. Intra-articular injection of zymosan resulted in acute inflammation and was followed by cartilage degeneration. Local administrations of BMP-7 inhibited this loss of cartilage matrix in a dose-dependent manner. Immunohistochemical analysis demonstrated enhanced type II collagen levels in cartilage and enhanced BMP-7 levels in cartilage and synovium after exogenous BMP-7 treatment. Joint swelling and cell infiltration into synovium were significantly reduced by BMP-7 injections. Administration of BMP-7 decreased IL-1β production significantly and increased IL-10 production in the synovium. Thus, intra-articular injections of BMP-7 had a protective effect on cartilage degeneration in the inflammatory arthritis model by enhancing levels of BMP-7 in cartilage and suppressing the production of IL-1β in synovium.  相似文献   

5.
During immune-complex-mediated arthritis (ICA), severe cartilage destruction is mediated by Fcγ receptors (FcγRs) (mainly FcγRI), cytokines (e.g. IL-1), and enzymes (matrix metalloproteinases (MMPs)). IL-13, a T helper 2 (Th2) cytokine abundantly found in synovial fluid of patients with rheumatoid arthritis, has been shown to reduce joint inflammation and bone destruction during experimental arthritis. However, the effect on severe cartilage destruction has not been studied in detail. We have now investigated the role of IL-13 in chondrocyte death and MMP-mediated cartilage damage during ICA. IL-13 was locally overexpressed in knee joints after injection of an adenovirus encoding IL-13 (AxCAhIL-13), 1 day before the onset of arthritis; injection of AxCANI (an empty adenoviral construct) was used as a control. IL-13 significantly increased the amount of inflammatory cells in the synovial lining and the joint cavity, by 30% to 60% at day 3 after the onset of ICA. Despite the enhanced inflammatory response, chondrocyte death was diminished by two-thirds at days 3 and 7. The mRNA level of FcγRI, a receptor shown to be crucial in the induction of chondrocyte death, was significantly down-regulated in synovium. Furthermore, MMP-mediated cartilage damage, measured as neoepitope (VDIPEN) expression using immunolocalization, was halved. In contrast, mRNA levels of MMP-3, -9, -12, and -13 were significantly higher and IL-1 protein, which induces production of latent MMPs, was increased fivefold by IL-13. This study demonstrates that IL-13 overexpression during ICA diminished both chondrocyte death and MMP-mediated VDIPEN expression, even though joint inflammation was enhanced.  相似文献   

6.
Transforming growth factor beta (TGF-beta) is a multifunctional homodimeric polypeptide with potent actions upon many target cells, including those of mesenchymal and haemopoietic lineage. The recent reports of high levels of the cytokine in rheumatoid synovium and synovial fluid, prompted this study into the effect of intra-articular injection of TGF beta-2 into rabbit knee-joints. Four daily injections of 1 microgram caused swelling, probably as a consequence of prostaglandin E2 production, synovial fibroblastic hyperplasia and a striking loss of femoral condyle proteoglycan. Using the polymerase chain reaction, no evidence could be obtained for the induction of interleukin-1 alpha gene expression in either synovial tissue or synovial fluid cells. These findings suggest that the TGF-beta present in the rheumatoid joint may contribute directly to the pathogenesis of rheumatoid arthritis.  相似文献   

7.
BACKGROUND: Gene transfer to synovium in joints has been shown to be an effective approach for treating pathologies associated with rheumatoid arthritis (RA) and related joint disorders. However, the efficiency and duration of gene delivery has been limiting for successful gene therapy for arthritis. The transient gene expression that often accompanies non-viral gene delivery can be prolonged by integration of vector DNA into the host genome. We report a novel approach for non-viral gene therapy to joints that utilizes phage phiC31 integrase to bring about unidirectional genomic integration. METHODS: Rabbit and human synovial cells were co-transfected with a plasmid expressing phiC31 integrase and a plasmid containing the transgene and an attB site. Cells were cultured with or without G418 selection and the number of neo-resistant colonies or eGFP cells determined, respectively. Plasmid rescue, PCR query, and DNA sequence analysis were performed to reveal integration sites in the rabbit and human genomes. For in vivo studies, attB-reporter gene plasmids and a plasmid expressing phiC31 integrase were intra-articularly injected into rabbit knees. Joint sections were used for histological analysis of beta-gal expression, and synovial cells were isolated to measure luciferase expression. RESULTS: We demonstrated that co-transfection of a plasmid expressing phiC31 integrase with a plasmid containing the transgene and attB increased the frequency of transgene expression in rabbit synovial fibroblasts and primary human RA synoviocytes. Plasmid rescue and DNA sequence analysis of plasmid-chromosome junctions revealed integration at endogenous pseudo attP sequences in the rabbit genome, and PCR query detected integration at previously characterized integration sites in the human genome. Significantly higher levels of transgene expression were detected in vivo in rabbit knees after intra-articular injection of attB-reporter gene plasmids and a plasmid expressing phiC31 integrase. CONCLUSION: The ability of phiC31 integrase to facilitate genomic integration in synovial cells and increase transgene expression in the rabbit synovium suggests that, in combination with more efficient DNA delivery methods, this integrase system could be beneficial for treatment of rheumatoid arthritis and other joint disorders.  相似文献   

8.
Rheumatoid arthritis is a chronic inflammatory joint disease, leading to cartilage and bone destruction. In this study, we investigated the effects of local IL-4 application, introduced by a recombinant human type 5 adenovirus vector, in the knee joint of mice with collagen-induced arthritis. One intraarticular injection with an IL-4-expressing virus caused overexpression of IL-4 in the mouse knee joint. Enhanced onset and aggravation of the synovial inflammation were found in the IL-4 group. However, despite ongoing inflammation, histologic analysis showed impressive prevention of chondrocyte death and cartilage erosion. In line with this, chondrocyte proteoglycan synthesis was enhanced in the articular cartilage. This was quantified with ex vivo 35S-sulfate incorporation in patellar cartilage and confirmed by autoradiography on whole knee joint sections. Reduction of cartilage erosion was further substantiated by lack of expression of the stromelysin-dependent cartilage proteoglycan breakdown neoepitope VDIPEN in the Ad5E1 mIL-4-treated knee joint. Reduced metalloproteinase activity was also supported by markedly diminished mRNA expression of stromelysin-3 in the synovial tissue. Histologic analysis revealed marked reduction of polymorphonuclear cells in the synovial joint space in the IL-4-treated joints. This was confirmed by immunolocalization studies on knee joint sections using NIMP-R14 staining and diminished mRNA expression of macrophage-inflammatory protein-2 in the synovium tissue. mRNA levels of TNF-alpha and IL-1beta were suppressed as well, and IL-1beta and nitric oxide production by arthritic synovial tissue were strongly reduced. Our data show an impressive cartilage-protective effect of local IL-4 and underline the feasibility of local gene therapy with this cytokine in arthritis.  相似文献   

9.
The inflamed synovium of rheumatoid arthritis exhibits many features typical for neoplastic tissue implying that the photodynamic therapy might be an efficient modality for chronic poliarthritis. The accumulation of endogenously produced porphyrins after administration of exogenous 5-aminolevulinic acid (ALA) in a rabbit model of rheumatoid arthritis was evaluated by fluorescence spectroscopy. Independent of the way, intravenously or intra-articularly, in which ALA was administered to the experimental animals, the highest fluorescence intensity of endogenously produced porphyrins was detected in the tissues of the inflamed joints. Besides, the application of ALA had a systemic sensitising effect on the whole organism of rabbits. The highest amount of endogenously produced porphyrins in the inflamed joints measured from the surface of the skin above the synovium tissues was detected 1-3 h after the administration of ALA. Fluorescence measurements performed on the tissue specimens ex vivo showed the predominant accumulation of porphyrins in the synovium of the inflamed joints. The fluorescence of porphyrins was also observed in the cartilage tissues taken from knee joints. However, the fluorescence spectra features indicated that the composition of porphyrins detected in the cartilage tissues was different than that in the synovial tissues. The selective accumulation of porphyrins in the inflamed synovial tissues stands up for the application of photodynamic therapy in the treatment of rheumatoid arthritis and implies the possibility to use optical non-invasive methods based on fluorescence detection of endogenously produced porphyrins for diagnostics of inflamed tissues.  相似文献   

10.

Introduction  

The rheumatoid arthritis (RA) synovium is characterised by the presence of an aggressive population of activated synovial fibroblasts (RASFs) that are prominently involved in the destruction of articular cartilage and bone. Accumulating evidence suggests that RASFs are relatively resistant to Fas-ligand (FasL)-induced apoptosis, but the data concerning tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) have been conflicting. Here, we hypothesise that the susceptibility of RASFs to receptor-mediated apoptosis depends on the proliferation status of these cells and therefore analysed the cell cycle dependency of FasL- and TRAIL-induced programmed cell death of RASFs in vitro.  相似文献   

11.
1. The destruction of articular cartilage in human rheumatoid and other arthritides is the result of diverse mechanical, inflammatory and local cellular factors. A tissue-culture model for studying cartilage-synovial interactions that may be involved in the final common pathway of joint destruction is described. 2. Matrix breakdown was studied in vitro by using bovine nasal-cartilage discs cultivated in contact with synovium. Synovia were obtained from human and animal sources. Human tissue came from patients with ;classical' rheumatoid arthritis, and animal tissue from rabbits with antigen-induced arthritis. 3. Cartilage discs increased their proteoglycan content 2-3-fold during 8 days in culture. Proteoglycan was also released into culture medium, approx. 70% arising from cartilage breakdown. 4. Synovial explants from human rheumatoid and rabbit antigen-induced arthritis produced equivalent stimulation of proteoglycan release. After an initial lag phase, the breakdown rate rose abruptly to a maximum, resulting in a 2-fold increase of proteoglycan accumulation in culture medium after 8-10 days. 5. High-molecular-weight products shed into culture media were characterized chromatographically and by differential enzymic digestion. Proteoglycan-chondroitin sulphate accounted for 90% of the released polyanion, and its partial degradation in the presence of synovial explants was consistent with limited proteolytic cleavage. 6. Rheumatoid synovium applied to dead cartilage increased the basal rate of proteoglycan release. Living cartilage was capable of more extensive autolysis, even in the absence of synovium. However, optimal proteoglycan release required the interaction of living synovium with live cartilage. These findings support the view that a significant component of cartilage breakdown may be chondrocyte-mediated.  相似文献   

12.
The migration of intravenously administered adjuvant sensitized T lymphocytes to the knee synovium of recipient rats undergoing passive adjuvant arthritis has been followed. Using fluorescein isothiocyanate (FITC)-labeled adjuvant-sensitized T cells and anticollagen IgG, the present studies demonstrate the presence of fluorescent cells in the inflamed knee synovium of recipient rats undergoing passive arthritis. Proliferation studies indicate that synovial cells from these rats respond to Mycobacterium tuberculosis (MT). Since cross-reactivity between Mycobacterial antigens and cartilage proteoglycans has been previously demonstrated, it is suggested that adjuvant-sensitized T cells that are injected into naive rats migrate to the synovium, proliferate in response to cartilage proteoglycan, and initiate passive arthritis.  相似文献   

13.
Several lines of evidence speak for an important role of matrix metalloproteinases (MMPs) in the development of progressive joint destruction. To better understand the role of MMPs and their tissue inhibitors (TIMPs) in this process, we have used the antigen-induced arthritis model to study the temporospatial expression of several MMPs and TIMPs during the progression of arthritis. Arthritis was induced by a single intra-articular injection of methylated bovine serum albumin (mBSA) into one or both knee joints of adult mice previously immunised against mBSA. Samples were collected at 3, 7, 21 and 42 days after induction of arthritis for histology and RNA extraction, and analysed by Northern hybridisation, histochemistry and immunohistochemistry for production of several MMPs and TIMPs −1, −2 and −3. A systematic analysis of MMP and TIMP mRNA levels in mouse knee joints demonstrated a general upregulation of both MMPs and TIMPs during progression of arthritis. Upregulation of MMP-9, −13 and −14 coincided with the advancement of cartilage degeneration, but the expression patterns of MMP-9 and −13 also followed the course of synovial inflammation. TIMPs were steadily upregulated throughout the examination period. Immunohistochemical localisation of MMPs and TIMPs suggested the synovium to be the major source of MMP and TIMP production in arthritis, although articular cartilage chondrocytes also showed an increased production of both MMPs and TIMPs.  相似文献   

14.
Interleukin-34 (IL-34), recently identified as a novel inflammatory cytokine and the second ligand for colony-stimulating factor-1 receptor, is known to play regulatory roles in the development, maintenance, and function of mononuclear phagocyte lineage cells – especially osteoclasts. Regarding its primary effect on osteoclasts, IL-34 has been shown to stimulate formation and activation of osteoclasts, which in turn magnifies osteoclasts-resorbing activity. In addition to its role in osteoclastogenesis, IL-34 has been implicated in inflammation of synovium via augmenting production of inflammatory mediators, in which altered IL-34 expression is regulated by pro-inflammatory cytokines responsible for cartilage degradation. Indeed, IL-34 has been documented to be highly expressed in inflamed synovium of rheumatoid arthritis (RA) and knee osteoarthritis (OA) patients, which are recognized as inflammatory arthritis. Furthermore, a number of clinical studies demonstrated that IL-34 levels were significantly increased in the circulation and synovial fluid of patients with RA and knee OA. Its levels were also found to be positively associated with disease severity – especially radiographic severity of both RA and knee OA patients. Interestingly, emerging evidence has accumulated that functional blockage of IL-34 with specific antibody can alleviate the severity of inflammatory arthritis. It is therefore reasonable to speculate that IL-34 may be developed as a potential biomarker and a new therapeutic candidate for inflammatory arthritis. To date, there are numerous studies showing IL-34 involvement and association with many aspects of inflammatory arthritis. Herein, this review aimed to summarize the recent findings regarding regulatory role of IL-34 in synovial inflammation-mediated cartilage destruction and update the current comprehensive knowledge on usefulness of IL-34-based treatment in inflammatory arthritis – particularly RA and knee OA.  相似文献   

15.
16.
T cell IL-17 displays proinflammatory properties and is expressed in the synovium of patients with rheumatoid arthritis. Its contribution to the arthritic process has not been identified. Here, we show that blocking of endogenous IL-17 in the autoimmune collagen-induced arthritis model results in suppression of arthritis. Also, joint damage was significantly reduced. In contrast, overexpression of IL-17 enhanced collagen arthritis. Moreover, adenoviral IL-17 injected in the knee joint of type II collagen-immunized mice accelerated the onset and aggravated the synovial inflammation at the site. Radiographic and histologic analysis showed markedly increased joint destruction. Elevated levels of IL-1beta protein were found in synovial tissue. Intriguingly, blocking of IL-1alphabeta with neutralizing Abs had no effect on the IL-17-induced inflammation and joint damage in the knee joint, implying an IL-1 independent pathway. This direct potency of IL-17 was underscored in the unabated IL-17-induced exaggeration of bacterial cell wall-induced arthritis in IL-1beta(-/-) mice. In conclusion, this data shows that IL-17 contributes to joint destruction and identifies an IL-1-independent role of IL-17. These findings suggest IL-17 to be a novel target for the treatment of destructive arthritis and may have implications for tissue destruction in other autoimmune diseases.  相似文献   

17.
Background. Angiogenesis is involved in rheumatoid arthritis (RA) leading to leucocyte recruitment and inflammation in the synovium. Furthermore, synovial inflammation itself further potentiates endothelial proliferation and angiogenesis. In this study, we aimed at evaluating the reciprocical relationship between synovial inflammation and angiogenesis in a RA model, namely collagen-induced arthritis (CIA). Methods. CIA was induced by immunization of DBA/1 mice with collagen type II in adjuvant. Endothelial cells were detected using a GSL-1 lectin-specific immunohistochemical staining on knee joint sections. Angiogenesis, clinical scores and histological signs of arthritis were evaluated from the induction of CIA until the end of the experiment. Angiogenesis was quantified by counting both the isolated endothelial cells and vessels stained on each section. To evaluate the effect of increased angiogenesis on CIA, VEGF gene transfer was performed using an adeno-associated virus encoding VEGF (AAV-VEGF), by intra-muscular or intra-articular injection in mice with CIA. Results. We showed an increase in synovial angiogenesis from day 6 to day 55 after CIA induction, and, moreover, joint vascularization and clinical scores of arthritis were correlated (p < 0.0001, r = 0.61). Vascularization and histological scores were also correlated (p = 0.0006, r = 0.51). Systemic VEGF overexpression in mice with CIA was followed by an aggravation of arthritis as compared to AAV-lacZ control group (p < 0.0001). In contrast, there was no difference in clinical scores between control mice and mice injected within the knee with AAV-VEGF, even if joint vascularization was higher in this group than in all other groups (p = 0,05 versus non-injected group). Intra-articular AAV-VEGF injections induced more severe signs of histological inflammation and bone destruction than AAV-Lac Z or no injection. Conclusion. Angiogenesis and joint inflammation evolve in parallel during collagen-induced arthritis. Furthermore, this work shows that exogenous VEGF can aggravate CIA. It is direct evidence that the increase in joint vascularization leads to an exacerbation of arthritis. Taken together, these results emphasize the role of angiogenesis in inflammatory arthritis. It also suggests an early involvement of angiogenesis in joint inflammation.  相似文献   

18.
The immunological induction of arthritis in the knee of the rabbit is well established as a model for human rheumatoid arthritis. It has the special advantage of allowing the development of the condition, and the effect of disease-modifying agents, to be followed. Attention has been focussed on the activity of glucose 6-phosphate dehydrogenase in the synovial lining cells since the fourfold elevation of this activity was shown to be fundamental in the human condition. An equal elevation of this activity has now been demonstrated in the rabbit model. Furthermore, it has been shown that the oral administration of menadione decreases this activity towards normality with a concomitant decrease in the degree of inflammation.  相似文献   

19.
20.
The intercellular adhesion molecule-1 (ICAM-1) was found by immunostaining chondrocytes in cartilage from three patients with rheumatoid arthritis. Expression of ICAM-1 was restricted to chondrocytes in areas of erodedcartilage adjacent to the invading synovial tissue. Toluidine blue staining of these areas demonstrated severe depletion of the cartilage extracellular matrix. In areas of undamaged cartilage there was no ICAM-1 expression. Since ICAM-1 is not constitutively expressed on normal human articular cartilage, but could be induced in vitro by exogenous IL-1alpha, TNFalpha and IFNgamma or by co-culturing cartilage with inflammatory rheumatoid synovium, we conclude that the induction of ICAM-1 on rheumatoid chondrocytes results from the synergistic action of a variety of cytokines produced by the inflammatory cells of the invading pannus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号