首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletions in 17q11.2 affecting the NF1 gene and surrounding regions occur in 5% of patients with NF1. The two major types of NF1 deletions encompass 1.4-Mb and 1.2-Mb, respectively, and have breakpoints in the NF1 low-copy repeats or in the JJAZ gene and its pseudogene. Deletions larger than 1.4-Mb are rare, and only seven cases have been reported so far. Here, we describe a 26-year-old NF1 patient with an atypical NF1 deletion of 2-Mb. In contrast to the 1.4-Mb deletions, which preferentially occur by interchromosomal recombination during maternal meiosis, the deletion described here occurred intrachromosomally on the paternal chromosome. The centromeric deletion breakpoint lies in an L1-element located 1.3-Mb proximal to the NF1 gene. The telomeric deletion boundary is located in a single copy segment between an AT-rich segment and an AluSx-element in intron 15 of the JJAZ1 gene. Structural analysis implies that non-B DNA conformations at the breakpoints destabilized the duplex DNA and caused double-strand breaks. Although the breakpoints of this 2-Mb deletion are not recurrent, it is conspicuous that one breakpoint is located in the JJAZ1 gene. Paralogous recombination between the JJAZ1 gene and its pseudogene causes the recurrent 1.2 Mb deletions. The genomic architecture of the NF1 gene region, influenced by paralogous sequences such as the JJAZ1 gene and its pseudogene, seems also to stimulate the occurrence of non-recurrent deletions mediated by non-homologous end joining. Patient 442 described here suffers from a very high burden of subdermal neurofibromas. Magnetic resonance imaging of the whole body revealed numerous internal tumors, mainly plexiform neurofibromas and spinal tumors. This demonstrates the value of whole-body MRI scanning in determining the total tumor load, which is an important aspect in genotype/phenotype correlations with regard to large NF1 deletions.  相似文献   

2.
Neurofibromatosis type 1 (NF1) microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by nonallelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while a few uncommon deletions show unusual breakpoints. We characterized an uncommon 1.5-Mb deletion of an NF1 patient displaying a mild phenotype. We applied high-resolution FISH analysis allowing us to obtain the sequence of the first junction fragment of an uncommon deletion showing the telomeric breakpoint inside the IVS23a of the NF1 gene. Sequence analysis of the centromeric and telomeric boundaries revealed that the breakpoints were present in the AluJb and AluSx regions, respectively, showing 85% homology. The centromeric breakpoint is localized inside a chi-like element; a few copies of this sequence are also located very close to both breakpoints. The in silico analysis of the breakpoint intervals, aimed at identifying consensus sequences of several motifs usually involved in deletions and translocations, suggests that Alu sequences, probably associated with the chi-like element, might be the only recombinogenic motif directly mediating this large deletion.  相似文献   

3.
Shaw CJ  Lupski JR 《Human genetics》2005,116(1-2):1-7
Several recurrent common chromosomal deletion and duplication breakpoints have been localized to large, highly homologous, low-copy repeats (LCRs). The mechanism responsible for these rearrangements, viz., non-allelic homologous recombination between LCR copies, has been well established. However, fewer studies have examined the mechanisms responsible for non-recurrent rearrangements with non-homologous breakpoint regions. Here, we have analyzed four uncommon deletions of 17p11.2, involving the Smith–Magenis syndrome region. Using somatic cell hybrid lines created from patient lymphoblasts, we have utilized a strategy based on the polymerase chain reaction to refine the deletion breakpoints and to obtain sequence data at the deletion junction. Our analyses have revealed that two of the four deletions are a product of Alu/Alu recombination, whereas the remaining two deletions result from a non-homologous end-joining mechanism. Of the breakpoints studied, three of eight are located in LCRs, and five of eight are within repetitive elements, including Alu and MER5B sequences. These findings suggest that higher-order genomic architecture, such as LCRs, and smaller repetitive sequences, such as Alu elements, can mediate chromosomal deletions via homologous and non-homologous mechanisms. These data further implicate homologous recombination as the predominant mechanism of deletion formation in this genomic interval.  相似文献   

4.
Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.4-kb hotspot of nonallelic homologous recombination (NAHR). Here, we present the first comprehensive breakpoint analysis of type 2 deletions, which are a second type of recurring NF1 gene deletion. Type 2 deletions span 1.2 Mb and are characterized by breakpoints located within the SUZ12 gene and its pseudogene, which closely flank the NF1-REPs. Breakpoint analysis of 13 independent type 2 deletions did not reveal any obvious hotspots of NAHR. However, an overrepresentation of polypyrimidine/polypurine tracts and triplex-forming sequences was noted in the breakpoint regions that could have facilitated NAHR. Intriguingly, all 13 type 2 deletions identified so far are characterized by somatic mosaicism, which indicates a positional preference for mitotic NAHR within the NF1 gene region. Indeed, whereas interchromosomal meiotic NAHR occurs between the NF1-REPs giving rise to type 1 deletions, NAHR during mitosis appears to occur intrachromosomally between the SUZ12 gene and its pseudogene, thereby generating type 2 deletions. Such a clear distinction between the preferred sites of mitotic versus meiotic NAHR is unprecedented in any other genomic disorder induced by the local genomic architecture. Additionally, 12 of the 13 mosaic type 2 deletions were found in females. The marked female preponderance among mosaic type 2 deletions contrasts with the equal sex distribution noted for type 1 and/or atypical NF1 deletions. Although an influence of chromatin structure was strongly suspected, no sex-specific differences in the methylation pattern exhibited by the SUZ12 gene were apparent that could explain the higher rate of mitotic recombination in females.  相似文献   

5.
6.
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.  相似文献   

7.
The amelogenin gene on the Y chromosome (AMELY) is a homolog of the X chromosome amelogenin gene (AMELX), and the marker is employed for sexing in forensic casework. Deletion of the sequences in the Yp11.2 region containing the AMELY locus has been found in males from various ethnic populations. Two cases of AMELY null males found in the Japanese population had different Y haplogroups and deletion mapping. Proximal and distal breakpoints of a sample of haplogroup D2* were located in TSPYA and TSPYB arrays, respectively, suggesting that the deletion mechanism was non-allelic homologous recombination (NAHR). On the other hand, a sample of haplogroup O3a3c* had the distal breakpoint in the TSPYB array and the proximal breakpoint at position 7.94 Mb, not in the TSPYA array. The likely deletion mechanism is non-homologous end-joining. High-resolution STS mapping in the TSPYB array showed the distal breakpoints differed according to the haplogroups. The deletion length was estimated as 3.1–3.7 Mb and 1.6–1.7 Mb for the sample of haplogroup D2* and O3a3c*, respectively. These deletion events should have occurred independently.  相似文献   

8.
9.
Pleomorphic adenomas are benign epithelial tumors originating from the major and minor salivary glands. Extensive cytogenetic studies have demonstrated that they frequently show chromosome abnormalities involving chromosome 8, with consistent breakpoints at 8q12. In previous studies, we have shown that these breakpoints are located in a 9-cM interval betweenMOS/D8S285 and D8S260. Here, we describe directional chromosome walking studies starting from D8S260 as well as D8S285. Using the CEPH and ICRF YAC libraries, these studies resulted in the construction of two nonoverlapping YAC contigs of about 2 and 5 Mb, respectively. Initial fluorescencein situhybridization (FISH) analysis suggested that the majority of 8q12 breakpoints clustered within the 2-Mb contig, which was mapped to the centromeric part of chromosome band 8q12. This contig has at least double coverage and consists of 34 overlapping YAC clones. The localization of the YACs was confirmed by FISH analysis. On the basis of mapping data of landmarks with an average spacing of 65 kb as well as restriction enzyme analysis, a long-range physical map was established for the chromosome region spanned by the 2-Mb contig. The relative positions of various known genes and expressed sequence tags within this contig were also determined. Subsequent FISH analyses of pleomorphic adenomas using YACs as well as cosmids revealed that all but two of the 8q12 breakpoints in the primary tumors tested mapped within a 300-kb interval between theMOSproto-oncogene and STS EM156. The target gene affected by the chromosome aberrations mapping within this interval was recently shown to be thePLAG1gene, which encodes a novel zinc finger protein.  相似文献   

10.
Microdeletions within chromosome 22q11.2 cause a variable phenotype, including DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS). About 97% of patients with DGS/VCFS have either a common recurrent ~3 Mb deletion or a smaller, less common, ~1.5 Mb nested deletion. Both deletions apparently occur as a result of homologous recombination between nonallelic flanking low-copy repeat (LCR) sequences located in 22q11.2. Interestingly, although eight different LCRs are located in proximal 22q, only a few cases of atypical deletions utilizing alternative LCRs have been described. Using array-based comparative genomic hybridization (CGH) analysis, we have detected six unrelated cases of deletions that are within 22q11.2 and are located distal to the ~3 Mb common deletion region. Further analyses revealed that the rearrangements had clustered breakpoints and either a ~1.4 Mb or ~2.1 Mb recurrent deletion flanked proximally by LCR22-4 and distally by either LCR22-5 or LCR22-6, respectively. Parental fluorescence in situ hybridization (FISH) analyses revealed that none of the available parents (11 out of 12 were available) had the deletion, indicating de novo events. All patients presented with characteristic facial dysmorphic features. A history of prematurity, prenatal and postnatal growth delay, developmental delay, and mild skeletal abnormalities was prevalent among the patients. Two patients were found to have a cardiovascular malformation, one had truncus arteriosus, and another had a bicuspid aortic valve. A single patient had a cleft palate. We conclude that distal deletions of chromosome 22q11.2 between LCR22-4 and LCR22-6, although they share some characteristic features with DGS/VCFS, represent a novel genomic disorder distinct genomically and clinically from the well-known DGS/VCF deletion syndromes.  相似文献   

11.
The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp) of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage), including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs). These regions are correlated with increased non-allelic homologous recombination (NAHR) event frequency which presumably represents the origin of copy number variations (CNVs) and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s) for development of constitutional and acquired diseases.  相似文献   

12.
Homologous recombination between poorly characterized regions flanking the NF1 locus causes the constitutional loss of approximately 1.5 Mb from 17q11.2 covering > or =11 genes in 5%-20% of patients with neurofibromatosis type 1 (NF1). To elucidate the extent of microheterogeneity at the deletion boundaries, we used single-copy DNA fragments from the extreme ends of the deleted segment to perform FISH on metaphase chromosomes from eight patients with NF1 who had large deletions. In six patients, these probes were deleted, suggesting that breakage and fusions occurred within the adjacent highly homologous sequences. Reexamination of the deleted region revealed two novel functional genes FLJ12735 (AK022797) and KIAA0653-related (WI-12393 and AJ314647), the latter of which is located closest to the distal boundary and is partially duplicated. We defined the complete reading frames for these genes and two expressed-sequence tag (EST) clusters that were reported elsewhere and are associated with the markers SHGC-2390 and WI-9521. Hybrid cell lines carrying only the deleted chromosome 17 were generated from two patients and used to identify the fusion sequences by junction-specific PCRs. The proximal breakpoints were found between positions 125279 and 125479 in one patient and within 4 kb of position 143000 on BAC R-271K11 (AC005562) in three patients, and the distal breakpoints were found at the precise homologous position on R-640N20 (AC023278). The interstitial 17q11.2 microdeletion arises from unequal crossover between two highly homologous WI-12393-derived 60-kb duplicons separated by approximately 1.5 Mb. Since patients with the NF1 large-deletion syndrome have a significantly increased risk of neurofibroma development and mental retardation, hemizygosity for genes from the deleted region around the neurofibromin locus (CYTOR4, FLJ12735, FLJ22729, HSA272195 (centaurin-alpha2), NF1, OMGP, EVI2A, EVI2B, WI-9521, HSA272196, HCA66, KIAA0160, and WI-12393) may contribute to the severe phenotype of these patients.  相似文献   

13.
Small submicroscopic genomic deletions and duplications constitute up to 15% of all mutations underlying human monogenic diseases. In this study, we used newly designed high-resolution oligonucleotide microarrays with a median distance between the probes of 776 bp (average probe interval 2,271 bp) to detect gene deletions in nevoid basal cell carcinoma syndrome (NBCCS) patients. NBCCS, also called Gorlin syndrome, is characterized by developmental defects and tumorigenesis such as medulloblastomas and basal cell carcinomas, caused by mutations of the human patched-1 (PTCH1) gene. Two out of three deletions could not be detected by a conventional chromosomal analysis. A submicroscopic deletion as small as 165 kb was detected affecting only PTCH1, whereas the other two deletions were much larger (5 and 11 Mb). We demonstrated not only the exact number of genes involved in the deletion but also rapidly determined the junction sequences after pinpointing the breakpoint regions in all individuals analyzed. This report of an array-based determination of junction sequences of long deletions circumvented a labor-intensive analysis such as Southern blotting or FISH. Alu-mediated recombination in one case and non-homologous end joining in the other two were probably implicated in the generation of deletions. This method will contribute to the understanding of molecular pathogenesis of gene deletions as well as rapid genetic testing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kbMluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7–4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted withNotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in theXbcd249.2-Xmwg068 interval and 0.465 Mb/cM in theXbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate theXbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than theXbcd249.2-Xmwg068 interval.Names are necessary to report factually on available data; however the USDA neither guarantees nor warrants the standard of the product and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable  相似文献   

16.
Abnormal left-right-axis formation results in heterotaxy, a multiple-malformation syndrome often characterized by severe heart defects, splenic abnormalities, and gastrointestinal malrotation. Previously we had studied a large family in which a gene for heterotaxy, HTX1, was mapped to a 19-cM region in Xq24-q27.1. Further analysis of this family has revealed two recombinations that place HTX1 between DXS300 and DXS1062, an interval spanning approximately 1.3 Mb in Xq26.2. In order to provide independent confirmation of HTX1 localization, a PCR-based search for submicroscopic deletions in this region was performed in unrelated males with sporadic or familial heterotaxy. A cluster of sequence-tagged sites failed to amplify in an individual who also had a deceased, affected brother. FISH identified the mother as a carrier of the deletion, which arose as a new mutation from the maternal grandfather. The deletion interval spans 600-1,100 kb and lies wholly within the 1.3-Mb region identified by recombination. Discovery of this deletion supports localization of HTX1 to Xq26.2 and reveals the first molecular-genetic abnormality associated with human left-right-asymmetry defects.  相似文献   

17.
Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands.  相似文献   

18.
Yong RY  Gan LS  Chang YM  Yap EP 《Human genetics》2007,122(3-4):237-249
Amelogenin paralogs on Chromosome X (AMELX) and Y (AMELY) are commonly used sexing markers. Interstitial deletion of Yp involving the AMELY locus has previously been reported. The combined frequency of the AMELY null allele in Singapore and Malaysia populations is 2.7%, 0.6% in Indian and Malay ethnic groups respectively. It is absent among 541 Chinese screened. The null allele in this study belongs to 3 Y haplogroups; J2e1 (85.7%), F* (9.5%) and D* (4.8%). Low and high-resolution STS mapping, followed by sequence analysis of breakpoint junction confirmed a large deletion of 3 to 3.7-Mb located at the Yp11.2 region. Both breakpoints were located in TSPY repeat arrays, suggesting a non-allelic homologous recombination (NAHR) mechanism of deletion. All regional null samples shared identical breakpoint sequences according to their haplogroup affiliation, providing molecular evidence of a common ancestry origin for each haplogroup, and at least 3 independent deletion events recurred in history. The estimated ages based on Y-SNP and STR analysis were ∼13.5 ± 3.1 kyears and ∼0.9 ± 0.9 kyears for the J2e1 and F* mutations, respectively. A novel polymorphism G > A at Y-GATA-H4 locus in complete linkage disequilibrium with J2e1 null mutations is a more recent event. This work re-emphasizes the need to include other sexing markers for gender determination in certain regional populations. The frequency difference among global populations suggests it constitutes another structural variation locus of human chromosome Y. The breakpoint sequences provide further information to a better understanding of the NAHR mechanism and DNA rearrangements due to higher order genomic architecture. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Chromosome breakage in germline and somatic genomes gives rise to copy number variation (CNV) responsible for genomic disorders and tumorigenesis. DNA sequence is known to play an important role in breakage at chromosome fragile sites; however, the sequences susceptible to double-strand breaks (DSBs) underlying CNV formation are largely unknown. Here we analyze 140 germline CNV breakpoints from 116 individuals to identify DNA sequences enriched at breakpoint loci compared to 2800 simulated control regions. We find that, overall, CNV breakpoints are enriched in tandem repeats and sequences predicted to form G-quadruplexes. G-rich repeats are overrepresented at terminal deletion breakpoints, which may be important for the addition of a new telomere. Interstitial deletions and duplication breakpoints are enriched in Alu repeats that in some cases mediate non-allelic homologous recombination (NAHR) between the two sides of the rearrangement. CNV breakpoints are enriched in certain classes of repeats that may play a role in DNA secondary structure, DSB susceptibility and/or DNA replication errors.  相似文献   

20.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disease that causes a predisposition to nervous system tumors. Deleterious point mutations have been found in about 55% of NF2 patients, and large genomic deletions account for approximately 33% of NF2 gene alterations. The majority of these deletions are larger than 50 kb, with a breakpoint usually lying outside the NF2 gene. We identified two cases of intragenic deletion with loss of 1.5 and 40 kb, respectively. In both cases, one boundary of the deletion was located in or at the proximity of an SVA sequence in NF2 intron 4. No sequence identity longer than 5 bases and no signal of specific recombination have been evidenced on either side of the deletion breakpoints. These observations are compatible with a nonhomologous recombination being responsible for the genomic deletions. In a third case, a paracentric inversion of chromosome 22 was found. This chromosomal rearrangement breaks the NF2 gene in two parts and carries the first NF2 exon in a juxta-centromeric position. The variability in position of the deletions and the observation of a new chromosomal rearrangement in the NF2 gene underscore the importance of FISH analysis in the molecular diagnosis of NF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号