首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Litter size of DNA microinjected zygotes is lower than for non-manipulated zygotes. The rate of embryonic and fetal survival in early, mid and late gestation was determined to assess whether DNA integration was responsible for embryonic losses. Also, the effect of including non-microinjected embryos with injected embryos on pregnancy rate and transgenic pup production was determined. In Experiment 1, one-cell embryos from immature CD-1 mice were microinjected with a whey acidic protein promoter-human protein C gene construct. One hour after microinjection embryos were transferred to pseudopregnant recipients (45 transfers of 30 embryos each). Fifteen recipients were sacrificed on day 4, 12 and 18 of gestation and the embryos/fetuses analysed for the transgene. The percentage of embryos or fetuses that were positive for the transgene was not significantly different at any day. However, the number of viable embryos at day 4 was significantly greater than fetuses on days 12 or 18. In addition, a high degree of mosaicism was observed in day 18 fetuses and placentae recovered. In Experiment 2, one-cell embryos from CD-1 mice were microinjected and co-transferred with non-manipulated embryos (C57BL/6). Pregnancy rate and the total number of pups born were improved by addition of non-injected embryos. However, the number of transgenic mice produced was similar whether non-injected embryos were included or not. There were 32.2% (15/46) transgenic pups when 0 non-injected embryos were transferred compared with 15.1% (13/86) transgenic pups when 4 or 8 non-injected embryos were added to the transfers. In summary, a high degree of embryonic and fetal mortality occurs among microinjected embryos. Furthermore, since the percentage of transgenesis did not change throughout pregnancy, DNA integration does not appear to account for all of the embryonic losses. other factor(s) related to the microinjection procedure may be involved in the embryonic and fetal failure of microinjected embryos. Addition of non-injected embryos, although it increased pregnancy rate and the number of pups born from microinjected embryos, actually decreased the number of transgenic pups obtained per pregnancy.  相似文献   

2.
Selection of transgenic embryos prior to embryo transfer is a means to increase the efficiency of transgenic livestock production. Among transgenic reporters, cytoplasmic expression of green fluorescent protein (GFP) has features that make it ideal for transgenic embryo selection. The primary objective of this study was to assess cytoplasmic expression of a specially designed GFP reporter as a tool for transgenic bovine embryo selection. A second objective was to evaluate this reporter for studying transgenic mosaicism related to timing of integration of pronuclear microinjected DNA. Transgenic embryos produced by pronuclear injection showed a discrete pattern of GFP expression with clusters at 25, 50, and 100% of blastomeres expressing GFP. This pattern of mosaicism is interpreted to indicate that the integration of microinjected DNA occurred, not only at the pronuclear stage, but also in the subsequent cell divisions. Among the GFP-positive transgenic embryos, only in 21% did all the blastomeres show the green fluorescence. Using the fraction of positive blastomeres within an embryo, the timing of integration of microinjected DNA was estimated. The frequency of nonmosaic embryos expressing GFP is consistent with published germline transmission success rates of transgenic cattle derived from pronuclear microinjected embryos. These results indicate the possible application of GFP as a marker of transgenic embryos and graphically illustrate underlying complexities in DNA integration in embryos subjected to pronuclear microinjection.  相似文献   

3.
Transgenesis in domestic species, as a research tool and in biotechnological applications, has been limited by the expense of producing transgenic offspring by standard microinjection techniques. A major factor is the inefficiency of maintaining large numbers of recipient females, when a high percentage of these carry nontransgenic fetuses. There are two approaches to reduce this cost, the fusion of transfected fetal fibroblasts with enucleated oocytes, and the screening of microinjected embryos for transgene integration in blastocysts, prior to transfer. Here, we develop a luminescent screening system to select transgenic bovine embryos. A transgene with scaffold attachment regions flanking the murine HSP70.1 promoter linked to firefly luciferase cDNA, was microinjected into pronuclei of in vitro produced zygotes. At the blastocyst stage, the transgene was induced by heat shock (45 °C, 15 min) and 4–6 h later, luciferase expression was analyzed by photon counting imaging. Screened blastocysts were transferred to recipients and day 50 fetuses or calves were analyzed by PCR and Southern blot for transgene integration. When nonluminescent blastocysts were transferred, transgene integration was never observed. Of 13 fetuses derived from luminescent blastocysts, 3 contained integrated transgenes that were functional in all tissues examined. Image analysis of the signal emitted by positive blastocysts revealed that 9 nontransgenic fetuses were obtained from blastocysts that exhibited a localized luminescent signal. On the other hand, 3 of 4 fetuses derived from blastocysts that emitted light over more than 70% of their surface were transgenic. Thus, by selecting luminescent blastocysts on the basis of both signal intensity and distribution, the number of recipient females required to produce transgenic offspring can be greatly reduced. Using this technique it should also be possible to improve the efficiency of transgenesis by microinjection through studies in which vector design and integration conditions are examined at the blastocyst stage.  相似文献   

4.
Sperm-mediated gene transfer was used to produce transgenic rabbits that expressed the porcine growth hormone gene under the control of a metallothionein promoter. The gene that encodes the selectable marker green fluorescent protein (GFP) was inserted downstream of the transgene. After lipofectin-mediated gene transfer into sperm cells and after subsequent in vitro fertilization using the transfected sperm cells, 32% of the cultured blastocysts exhibited bright green fluorescence when stimulated with blue light. Of the 74 adult rabbits and five fetal rabbits (age, gestational day 15), 2 fetuses and 29 rabbits were GFP-positive as indicated by PCR analysis. Southern blot analysis of their genomic DNA showed that 13 of 21 GFP-positive rabbits were transgenic. GFP expression was observed in different tissues of transgenic rabbits and the growth rate of four GFP-positive rabbits was greater than that of controls. PCR analysis showed that one of six F1 offspring was transgenic. These results suggest that lipofectin-mediated gene transfer into sperm cells can be used to efficiently produce transgenic rabbits.  相似文献   

5.
6.
This study focused on concatemer formation and integration pattern of transgenes in zebrafish embryos. A reporter plasmid based on enhanced green fluorescent protein (eGFP) driven by Cytomegalovirus (CMV) promoter, pCMV-pax6in-eGFP, was constructed to reflect transgene behavior in the host environment. After removal of the insertion fragment by double digestion with various combinations of restriction enzymes, linearized pCMV-pax6in-eGFP vectors were generated with different combinations of 5'-protruding, 3'-protruding, and blunt ends that were microinjected into zebrafish embryos. Repair of double-strand breaks (DSBs) was monitored by GFP expression following religation of the reporter gene. One-hundred-and-ninety-seven DNA fragments were amplified from GFP-positive embryos and sequenced to analyze the repair characteristics of different DSB end combinations. DSBs involving blunt and asymmetric protruding ends were repaired efficiently by direct ligation of blunt ends, ligation after blunting and fill-in, or removed by cutting. Repair of DSBs with symmetric 3'-3' protrusions was less efficient and utilized template-directed repair. The results suggest that non-homologous end joining (NHEJ) was the principal mechanism of exogenous gene concatemer formation and integration of transgenes into the genome of transgenic zebrafish.  相似文献   

7.
We examined transgenic-cattle production by DNA microinjection into 1-, 2-, and 4-cell embryos, analyzing the impact on calf size and subsequent viability. Embryos were either collected at an abattoir by flushing oviducts from superovulated and artificially inseminated cows (in vivo-derived) or obtained by in vitro maturation and in vitro fertilization of oocytes aspirated from excised ovaries (in vitro-derived). A human serum albumin (hSA) milk-expression DNA construct was microinjected, either in one of the visible pronuclei of in vitro- and in vivo-derived 1-cell embryos or in the nuclei of two blastomeres of 2- and 4-cell in vivo-derived embryos. Microinjection-induced mortality (lysis and developmental block) was equivalent ( approximately 40%) for all microinjected embryos. Embryos were co-cultured with BRL cells in B-2 medium containing 10% fetal calf serum (FSC). Overall, embryo development to morulae/blastocysts was significantly greater for in vivo-derived ova (15.5%) than for in vitro-derived oocytes (9.3%). All morulae and blastocysts were transferred to synchronized recipient females on Days 6-8 post-fertilization. A total of 189 calves were delivered. Birth weights were significantly greater for calves generated from in vitro-derived oocytes compared with those generated from in vivo-derived oocytes. One transgenic bull calf was obtained from the microinjection of a 2-cell embryo. Fluorescence in situ hybridization (FISH) analysis of lymphocytes detected one transgenic integration site in all cells. Transmission frequency of the hSA transgene in embryos obtained through IVM/IVF/IVC utilizing the semen of the transgenic calf confirmed that it was not mosaic.  相似文献   

8.
Understanding the behavior of transgenes introduced into oocytes or embryos is essential for evaluating the methodologies for transgenic animal production. We investigated the expression pattern of a transgene transferred to porcine eggs by intracytoplasmic sperm injection‐mediated gene transfer (ICSI‐MGT) or pronuclear microinjection (PN injection). The introduction of the EGFP gene by ICSI‐MGT yielded significantly more embryos with non‐mosaic transgene expression (P < 0.01). In the ICSI‐MGT group, 61.5% (24/39) of the embryos were EGFP‐positive in all their component blastomeres at the morula stage, while fewer than 10% of such embryos were EGFP‐positive in the PN‐injection group. Using three types of transgenes, ranging from 3.0 to 7.5 kb in size, we confirmed that approximately one in four fetuses obtained by ICSI‐MGT was transgenic, suggesting that ICSI‐MGT is a practical method for transgenic pig production. Southern blot analysis of 12 transgenic fetuses produced by ICSI‐MGT revealed that the number of integrated transgene copies varied from 1 to 300, with no correlation between transgene size and the number of integrated copies. Fluorescence in situ hybridization analysis revealed that the transgenes were randomly integrated into a single site on the host chromosomes. Together, these data indicate that multiple‐copy, single‐site integration of a transgene is the primary outcome of ICSI‐MGT in the pig and that ICSI‐MGT is less likely than PN injection to cause transgene integration in a mosaic manner. Mol. Reprod. Dev. 79: 218–228, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
10.
Matrix Attachment Regions (MARs) are DNA elements that are thought to influence gene expression by anchoring active chromatin domains to the nuclear matrix. When flanking a construct in transgenic plants, MARs could be useful for enhancing transgene expression. Naturally occurring MARs have a number of sequence features and DNA elements in common, and using different subsets of these sequence elements, three independent synthetic MARs were created. Although short, these MARs were able to bind nuclear scaffold preparations with an affinity equal to or greater than naturally occurring plant MARs. One synthetic MAR was extensively tested for its effect on transgene expression, using different MAR orientations, plant promoters, transformation methods and plant species. This MAR was able to increase average transgene expression and produced integration patterns of lower complexity. These data show the potential of making well defined synthetic MARs and using them to improve transgene expression.  相似文献   

11.
目的:通过建立慢病毒载体感染猪胚胎体系实现胚胎标记,进而研究不同发育阶段猪孤雌胚胎之间的嵌合能力,为进一步研究猪早期胚胎发育以及细胞分化奠定基础.方法:首先,通过显微注射的方法把2×109I.U./ml、2×108I.U./ml和2×107I.U./ml三个梯度的表达绿色荧光的慢病毒载体分别注射到猪1-细胞胚胎和2-细胞胚胎的透明带下,进行胚胎的GFP转基因标记,在荧光显微镜下观察比较卵裂率、阳性胚胎率、囊胚率、阳性囊胚率和囊胚细胞数.然后,采用凹窝聚合法对同步发育胚胎在不同阶段(2-细胞,4-细胞,8-细胞)进行嵌合,2-细胞胚胎与不同发育阶段(2-细胞、4-细胞、8-细胞)胚胎进行嵌合以及2-细胞胚胎卵裂球互换制作嵌合体胚胎,发育到囊胚时在荧光显微镜下检测胚胎的嵌合状态.结果:2×109I.U./ml的慢病毒感染猪2-细胞胚胎组中,体外受精和孤雌胚胎感染阳性率( 80.00%、76.36%)和阳性囊胚率(90.74%、89.56%)都显著高于其它滴度组(P<0.05),另外,慢病毒感染的两种胚胎与对照组对卵裂率、囊胚率和囊胚细胞数三个指标没有显著影响(P>0.05).2-细胞胚胎之间嵌合囊胚率和2-细胞卵裂球互换嵌合囊胚率( 53.85%、62.50%)显著高于2-细胞胚胎与4-细胞胚胎的嵌合率(18.60%,P<0.05),在同步发育胚胎中8-细胞胚胎之间的嵌合率(75.00%)高于4-细胞胚胎之间和2-细胞胚胎之间的嵌合率( 65.00%、53.80%).结论:2×109I.U./ml的慢病毒感染2-细胞期胚胎效率最高,另外,慢病毒感染对猪胚胎发育没有明显影响.8-细胞间的嵌合率比较高;发育同步胚胎间的嵌合率高于发育非同步胚胎间的嵌合率.  相似文献   

12.
We present a polymerase chain reaction (PCR)-based procedure for rapid bovine embryo sexing and classifying embryos for the presence of exogenous DNA. Fourteen bovine blastocysts microinjected with gene construct DNA at the pronuclear stage were divided into quarters and subjected to amplification with construct-specific and sex gene-specific (ZFY/ZFX) primers in the same initial PCR reaction. Blastocysts carrying microinjected construct DNA could be identified by the presence of construct-specific PCR product in approximately 4 h. Approximately half of the microinjected and two of 16 non-microinjected blastocysts typed PCR-positive for the construct DNA. Owing to erroneous amplifications in the two non-microinjected control blastocysts, and the inability of the system to distinguish integrated from non-integrated copies of the microinjected construct, the number of construct-positive blastocysts determined in our assay most likely overestimates the number of true transgenic embryos. Nevertheless, using this assay, we were able to determine that approximately half of the microinjected embryos were negative for the transgene construct and thus could be eliminated from transfer to a recipient cow. Embryo sexing was achieved in less than 6 h by restriction fragment length polymorphism analysis of nestedZFY/ZFXPCR products reamplified from initial PCR reactions. In 11/14 microinjected blastocysts all sections assayed unambiguously as the same sex. In one embryo, only one section was analysed, while two other blastocysts whowed some discrepancies of sexing results between the sections analysed. The approach employed here to determine the sex and presence of microinjected construct DNA in bovine preimplantation embryos is rapid, accurate among different sections of an embryo and can be used to increase the efficiency of current transgenic cattle production procedures.  相似文献   

13.
Adoptive cell transfer studies in regenerative research and identification of genetically modified cells after gene therapy in vivo require unequivocally identifying and tracking the donor cells in the host tissues, ideally over several days or for up to several months. The use of reporter genes allows identifying the transferred cells but unfortunately most are immunogenic to wild-type hosts and thus trigger rejection in few days. The availability of transgenic animals from the same strain that would express either high levels of the transgene to identify the cells or low levels but that would be tolerant to the transgene would allow performing long-term analysis of labelled cells. Herein, using lentiviral vectors we develop two new lines of GFP-expressing transgenic rats displaying different levels and patterns of GFP-expression. The “high-expresser” line (GFPhigh) displayed high expression in most tissues, including adult neurons and neural precursors, mesenchymal stem cells and in all leukocytes subtypes analysed, including myeloid and plasmacytoid dendritic cells, cells that have not or only poorly characterized in previous GFP-transgenic rats. These GFPhigh-transgenic rats could be useful for transplantation and immunological studies using GFP-positive cells/tissue. The “low-expresser” line expressed very low levels of GFP only in the liver and in less than 5% of lymphoid cells. We demonstrate these animals did not develop detectable humoral and cellular immune responses against both transferred GFP-positive splenocytes and lentivirus-mediated GFP gene transfer. Thus, these GFP-transgenic rats represent useful tools for regenerative medicine and gene therapy.  相似文献   

14.
Experiments with mouse embryos were designed to assess the feasibility of freezing embryos after DNA microinjection. One-cell pronuclear stage mouse embryos were microinjected with cloned deoxyribonucleic acid (DNA) and cultured in vitro to the late eight-cell stage. Microinjected and matched control embryos were frozen and stored in liquid nitrogen. Following thawing, embryos were cultured for 8 h and transferred to recipient females. In a separate set of experiments, embryos were transferred to recipients immediately following DNA microinjection. Control (uninjected) embryos developed to the late eight-cell stage significantly better than surviving microinjected embryos. Of the embryos thawed, 76% of the microinjected and 60% of the control embryos survived to be transferred to recipients. Progeny were obtained with similar survival rates from both groups following embryo transfer with transgenic mice identified among the progeny from microinjected embryos. Mouse embryos can be microinjected with DNA, cultured in vitro, frozen, thawed, transferred to recipients and transgenic progeny can be obtained.  相似文献   

15.
Due to a rising demand of porcine models with complex genetic modifications for biomedical research, the approaches for their generation need to be adapted. In this study we describe the direct introduction of a gene construct into the pronucleus (PN)-like structure of cloned embryos as a novel strategy for the generation of genetically modified pigs, termed “nuclear injection”. To evaluate the reliability of this new strategy, the developmental ability of embryos in vitro and in vivo as well as the integration and expression efficiency of a transgene carrying green fluorescence protein (GFP) were examined. Eighty percent of the cloned pig embryos (633/787) exhibited a PN-like structure, which met the prerequisite to technically perform the new method. GFP fluorescence was observed in about half of the total blastocysts (21/40, 52.5%), which was comparable to classical zygote PN injection (28/41, 68.3%). In total, 478 cloned embryos injected with the GFP construct were transferred into 4 recipients and from one recipient 4 fetuses (day 68) were collected. In one of the fetuses which showed normal development, the integration of the transgene was confirmed by PCR in different tissues and organs from all three primary germ layers and placenta. The integration pattern of the transgene was mosaic (48 out of 84 single-cell colonies established from a kidney were positive for GFP DNA by PCR). Direct GFP fluorescence was observed macro- and microscopically in the fetus. Our novel strategy could be useful particularly for the generation of pigs with complex genetic modifications.  相似文献   

16.
Jang G  Bhuiyan MM  Jeon HY  Ko KH  Park HJ  Kim MK  Kim JJ  Kang SK  Lee BC  Hwang WS 《Theriogenology》2006,65(9):1800-1812
In an attempt to produce transgenic cloned cows secreting alpha 1-antitrypsin (alpha1-AT) protein into milk, bovine cumulus cells were transfected with a plasmid containing an alpha1-AT gene and green fluorescent protein (GFP) reporter gene using Fugene 6 as a lipid carrier. The GFP-expressing cells were selected and transferred into enucleated bovine oocytes. Couplets were fused, chemically activated and cultured. Developmental competence was monitored and the number of inner cell mass (ICM) and trophectoderm (TE) cells in blastocysts were counted after differential staining. The percentage of blastocysts was lower (P < 0.05) in transgenic cloned embryos compared to non-transgenic cloned embryos (23% versus 35%). No difference in the numbers of ICM and TE cells between the two groups of embryos was observed. One or two GFP-expressing blastocysts were transferred into the uterus of each recipient cow. Out of 49 recipient cows, three pregnancies were detected by non-return estrus and rectal palpation. However, the pregnancies failed to maintain to term; two fetuses were aborted at Day 60 and 150, respectively, and one fetus at Day 240. The genomic DNA from the aborted fetus was amplified by polymerase chain reaction (PCR) to investigate integration of the transgene in the fetus. The expected PCR product was sequenced and was identical to the sequence of alpha1-AT transgene. In conclusion, the present study demonstrated that developmental competence of cloned embryos derived from transgenic donor cells was lower than embryos derived from non-transfected donor cells. Although we failed to obtain a viable transgenic cloned calf, integration of alpha1-AT gene into the fetus presents the possibility of producing transgenic cloned cows by somatic cell nuclear transfer.  相似文献   

17.
Mouse embryos at the 2-, 4-, 8-cell, and morula stage were divided in half by using microsurgical procedures and were either grown in vitro up to the blastocyst stage or transferred at the late morula stage into the uteri of pseudopregnant recipients. A relatively high percentage of the half embryos from 2-cell (70%), 4-cell (75%), 8-cell (93%), or morula stage embryos (75%) developed into blastocysts in vitro. However, the overall development in vivo of half embryos was low, as 3%, 13%, 8%, and 1% of half embryos from the 2-cell, 4-cell, 8-cell, and morula stages, respectively, developed into live fetuses. Embryos which were divided in half at different stages developed at different rates in vitro. This determined the stage of embryonic development at the time of transfer, which might have interacted with the stage of pseudopregnancy of the recipients to influence embryo survival in vivo.  相似文献   

18.
转基因斑马鱼分析胰岛β-细胞发育情况   总被引:1,自引:0,他引:1  
斑马鱼的个体小、高产和体外受精等特点使其已经迅速成为研究脊椎动物器官发育和人类疾病的模式生物之一。我们建立了一个转基因斑马鱼动物模型来研究胰岛β-细胞的发育。首先,构建了斑马鱼胰岛素(Insulin ,INS) 启动子与绿色荧光蛋白(GFP) 组成的表达载体, 命名为INS:GFP。其次,将质粒在斑马鱼1-细胞期注射到细胞质内。最后我们成功获得了生殖系稳定遗传胰岛素转基因斑马鱼,在成鱼和幼鱼期均可以通过GFP标记β-细胞。通过方便的荧光筛选,我们观察到胰岛在受精后18h开始形成,1-5d后由初始的脊索中线两侧向右迁移。从我们构建的胰岛素转基因斑马鱼,可以直观判断胰岛的发育情况,为研究胰岛的发育、损伤和再生提供了一个简便和直观的新型工具。  相似文献   

19.
Green fluorescent protein (GFP) has been used as an indicator of transgene expression in living cells and organisms. For testing the utility of GFP in rainbow trout, we microinjected fertilized eggs with four types of supercoiled constructs containing two variants of GFP complementary DNA (S65T and EGFP), driven by two ubiquitous regulatory elements, human cytomegalovirus immediate early enhancer-promoter (CMV) and Xenopus laevis elongation factor 1α enhancer-promoter (EF1). Green fluorescence was first observed at 3 days postfertilization, when the embryo was in the mid-blastula stage. Fluorescence could be detected mosaically in various types of embryonic cells and tissues of swim-up fry. Both the percentage of fluorescent cells and the fluorescence intensity of GFP-expressing cells on blastoderms, measured with a microscopic photometry system, were highest in CMV-EGFP-microinjected embryos. We conclude that GFP is capable of producing detectable fluorescence in rainbow trout, and can be a powerful tool as a cell marker and reporter gene for cold-water fish, and that analysis of GFP expression in living cells is useful for characterizing the activity of cis-elements in vivo. Received December 21, 1998; accepted March 31, 1999.  相似文献   

20.
Y W Chu  R Wang  I Schmid  K M Sakamoto 《Cytometry》1999,36(4):333-339
BACKGROUND: The measurement of DNA content with propidium iodide (PI) in cells transfected with expression vectors encoding the green fluorescent protein (GFP) is a useful tool in studying a variety of biological functions of proteins within cells. The purpose of this study was to determine conditions of formaldehyde fixation that permit intracellular GFP fluorescence and adequate DNA histograms to be generated following transient transfection of cells with a GFP-encoding plasmid. Cell cycle analysis was also performed in GFP-positive cells. METHODS: The murine myeloid leukemic cell line, 32Dcl3, was used as the model system. Cells were transfected with a GFP-encoding plasmid (pEGFPC1). Following fixation in different formaldehyde concentrations and permeabilization with 70% ethanol, cells were stained with PI and analyzed by flow cytometry for GFP fluorescence and DNA content. Transfected cells were also analyzed for GFP fluorescence and DNA content following release from nocodazole block. RESULTS: Fixing cells in 0.51-1.75% formaldehyde concentrations prior to ethanol permeabilization resulted in 14-19% of transfected cells being GFP-positive, with acceptable coefficients of variation on the G(1) peak of DNA histograms. Analysis of cells synchronized to and released from the G(2)-M phase by nocodazole suggested that GFP-positive cells, when compared to GFP-negative cells, did not appear to progress out of G(2)-M following release from nocodazole block. Simultaneous detection of GFP fluorescence and DNA content by PI staining is possible following transient transfection of cells with a single expression vector encoding GFP. Our results demonstrate that GFP expression can be detected, using flow cytometry to perform cell cycle analysis in murine leukemic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号