首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Spatial patterns of parasitism of eumenid wasps Anterhynchium flavomarginatum and Orancistrocerus drewseni by the miltogrammine fly Amobia distorta were studied in Kyoto, Japan during 1980–1984.
  2. In generations of low (<5%) and medium (5–20%) parasitism, percent parasitism per shed (the habitat of the hosts) increased as a function of host density. Conversely, in generations of high (>20%) parasitism, percent parasitism was rather constant over different host densities.
  3. The spatial distributions of adult miltogrammine flies among sheds were censused in generations of low and medium parasitism. The frequency of observations of adult miltogrammine flies was higher at sheds of higher host density (aggregative behavioral response), but on the other hand, the adult miltogrammine flies distributed in an underdispersed (or regular) manner in relation to other conspecifics.
  4. The spatially density independent relationship between host density and percent parasitism in generations of high parasitism was explained in relation to parasitoid dispersal from patches of high parasitoid density.
  相似文献   

2.
When a fixed number of the hosts, the eggs of the almond moth were exposed experimentally to various numbers of the parasites, Trichogramma japonicum, the following changes were observed with increasing parasite density:
  1. The percentage of parasitism rises and approaches to 100 with gradually diminishing rate.
  2. The number of parasite progeny increases and reaches a maximum, then decreases gradually.
  3. The number of eggs laid per parasite female decreases gradually.
  4. The proportion of hyperparasitized hosts progressively rises. The frequency distribution of parasite eggs in a host is of an intermediate type between random and uniform.
  5. The competition among parasite larvae becomes severe. The progressive rise in mortality, the declining percentage of females in progeny and the emergence of stunted adults at the higher densities are observed.
In connection with both the nature of the parasitizing behaviour of adult and that of the competition among larvae, the nature of the density effect on the parasite population was discussed.  相似文献   

3.
ABSTRACT.
  • 1 A field study was made of foraging time allocation by a population of parasitic wasps, Diadegma spp. (Ichneumonidae), to plants containing different densities of their hosts, the caterpillars of Plutella xylostella (L.).
  • 2 The parasitoid population exhibited a clear aggregative response, spending more total time on higher density patches, which probably resulted from wasps making more and longer visits to these densities.
  • 3 Despite this aggregation, positive density dependent parasitism was not found. The functional response of the Diadegma population exhibited an upper asymptote at high host densities, probably due to an increase in the proportion of time spent handling hosts, which countered the effect of aggregation.
  • 4 While Diadegma may select and forage preferentially on plants with higher host density, they do not exhibit the tendency, predicted by some optional foraging models, to exploit progressively less profitable plants during a foraging bout. Some factors affecting patterns of parasitoid foraging in the field are discussed.
  相似文献   

4.
Good culturing methods play an important role in the study of insect behavior and its application to pest management. Here, we describe and validate a new method for rearing the parasitoid wasp, Diachasmimorpha kraussii, which attacks some of the world's worst fruit fly pests and is an internationally used biological control agent. Our method differs from standard culturing approaches by presenting adult wasps with host‐infested artificial media within a “culturing bag,” which mimics a natural (fruit) oviposition substrate. In laboratory trials using wild collected D. kraussii, the culturing bag method was compared to the use of host‐infested nectarines, and a commonly used laboratory method of presenting host‐infested artificial media within Petri dishes. The culturing bag method proved to be a significant improvement on both methods, combining the advantages of high host survival in artificial media with parasitism levels that were the equivalent to those recorded using host‐infested fruits. In our field study, culturing bags infested with the Queensland fruit fly, Bactrocera tryoni, and hung in a mixed peach and nectarine orchard proved to be effective “artificial fruits” attracting wild D. kraussii for oviposition. Significantly more adult wasps were reared from the culturing bags compared to field collected fruits. This was shown to be due to higher fruit fly larval density in the bags, as similar percentage parasitism rates were found between the culturing bags and ripe fruits. We discuss how this cheap, time‐efficient method could be applied to collecting and monitoring wild D. kraussii populations in orchards, and assist in maintaining genetic variability in parasitoid laboratory cultures.  相似文献   

5.
Rami Kfir 《BioControl》1983,28(4):345-353
The effect of host density on parasitism byTrichogramma pretiosum Riley was studied by exposing groups of 150, 300, 600 or 1200 eggs of potato tuber moth to 2, 4 or 8 female parasites per group. The parasite exhibited a type 2 functional response. As host density increasedT. pretiosum parasitised more hosts, but at a decreasing rate. The attack coefficient (a′) decreased as parasite density increased, whereas the handling time (T h ) remained almost constant. The search rate (a) decreased with increasing host density.T. pretiosum responded to increasing host density by increasing the number of its encounters with hosts and the number of hosts it parasitised only up to host density of 300 when the parasite density was 2 and up to host density of 600 when the parasite densities were greater and then remained almost constant. The observed incidence of parasitism was higher than that expected on the assumption that the parasites behaved the same at higher host densities as at the lowest. When parasite density was raised from 2 to 8 females per group the percentage of female progeny fell from about 73 to about 48%. A 2-fold increase in the number of female progeny was observed when parasite density was reduced from 8 to 2 and also when the host density was raised from 150 to 1200 eggs.  相似文献   

6.
  1. Life table data for interactions between Anagasta kühniella and its ichneumon parasite Venturia canescens in two room ecosystems (A & B) have been analyzed in an attempt to explain and model each room situation. The life table data have been presented in the form of a graphical key-factor analysis, and have been further analyzed by an investigation of the density relationships between the different mortalities and the Angasta densities upon which the mortalities act.
  2. In room A (1.2 gm food per container), the parasites were present throughout the interaction. Egg and early larval mortality (k1) appeared to be directly density-dependent and was the sole stabilizing influence when introduced into the model for room A. The area of discovery of the parasite was relatively constant and its mean value was used to calculate parasitism (k3) in the model. All other mortalities were density-independent and treated as being constant at their mean values. The model predicts a series of oscillations of decreasing amplitude which are somewhat similar to those observed in the Anagasta population during the early stages of the interaction. The observed mean densities of host and parasite were very close to those predicted.
  3. In room B, the parasites were absent for the first 8 generations (1- 2gm food per container). Model B1 covers this period and includes a direct density-dependent component describing changes in k1, the remaining mortalities being constant. The observed mean densities approximate to the calculated densities. The parasites were present from the ninth generation and after the eleventh generation the food per container was increased to 7.2 gm. Model B2 covers the period in room B from generation 11. The most important component of k1 after the parasites were established is a delayed density-dependent one which appeared to be due to wounding of very small larvae by the probing activities of the parasites. Since the changes in k1 could not be suitably predicted, the observed values were used in model B2. This delayed component was not detected in room A due to the relatively small range of parasite densities in room A compared with the 600-fold change in densities in room B. The calculated area of discovery for the parasite population in each generation was found to vary inversely with searching parasite density, and this ‘interference relationship’ was used in the submodel for parasitism. Again, this relationship was not detected in room A due to the much smaller range of parasite densities there. Model B2 gives oscillations in host and parasite populations arising from parasitism being a delayed density-dependent mortality. The correspondence with the observed oscillations is partly due to the actual k1-values being used and partly because the submodel for parasitism adequately describes the observed changes in k3. The tendency for these oscillations to decrease in amplitude is due to both the damping effect of parasite interference and the direct density-dependent component of k1.
  相似文献   

7.
  1. The functional response to, and preference for, the host density in a parasite were examined experimentally using an icheumon wasp, Exidechthis canescens, and its host Cadra cautella under controlled conditions.
  2. Wasps were more active in host-searching at higher than lower host densities. Percent parasitism increased rapidly with initial increments in host density and then tended to increase more slowly at higher host densities. A sigmoid functional response curve is indicated, which implies that the parasite is able to control its host even at low densities.
  3. Wasps actively selected areas of high host density in which to concentrate host-searching behavior.
  4. Host-searching by E. canescens is stimulated by the odor of the host when present, and by food in which hosts have developed but have been removed.
  5. Both the functional response and the host-density preference of the parasite are mediated by its host-searching behavior. This relationship is discussed in the context of population regulation.
  相似文献   

8.
Clément Lagrue  Robert Poulin 《Oikos》2015,124(12):1639-1647
Theory predicts the bottom–up coupling of resource and consumer densities, and epidemiological models make the same prediction for host–parasite interactions. Empirical evidence that spatial variation in local host density drives parasite population density remains scarce, however. We test the coupling of consumer (parasite) and resource (host) populations using data from 310 populations of metazoan parasites infecting invertebrates and fish in New Zealand lakes, spanning a range of transmission modes. Both parasite density (no. parasites per m2) and intensity of infection (no. parasites per infected hosts) were quantified for each parasite population, and related to host density, spatial variability in host density and transmission mode (egg ingestion, contact transmission or trophic transmission). The results show that dense and temporally stable host populations are exploited by denser and more stable parasite populations. For parasites with multi‐host cycles, density of the ‘source’ host did not matter: only density of the current host affected parasite density at a given life stage. For contact‐transmitted parasites, intensity of infection decreased with increasing host density. Our results support the strong bottom–up coupling of consumer and resource densities, but also suggest that intraspecific competition among parasites may be weaker when hosts are abundant: high host density promotes greater parasite population density, but also reduces the number of conspecific parasites per individual host.  相似文献   

9.
10.
11.
12.
Contrasting scales of oviposition and parasitism in praying mantids   总被引:1,自引:0,他引:1  
We report on spatial patterns of parasitism of oothecae (egg cases) of praying mantises (Stagmomantis limbata) by torymid wasps, Podagrion spp. Using collections of mapped mantid oothecae from Riparian sites in the Sonoran desert and Grassland sites in the Chiricahua Mountains (both in Arizona, USA), we characterized the spatial distributions of oothecae and parasitism. The likelihood of an egg case suffering some parasitism was higher at Grassland sites, which had high oothecal densities, than at low-density Riparian sites. However, experimental isolation of Grassland oothecae to densities comparable to Riparian sites reduced parasitism rates. At Riparian sites, parasitized oothecae exhibited on average the same extent of parasitism as parasitized oothecae at high densities but with much greater variation. Indeed, large fractions of Riparian oothecae suffered both severe (>50%) and light (<20%) parasitism, whereas most parasitized Grassland oothecae suffered intermediate levels of parasitism. Analysis of first nearest neighbor distances indicated that the parasite load of an ootheca did not depend on its immediate isolation. However, extending the analysis to include subsequent nearest neighbors (using a technique from spatial statistics called the R(K) function), we found that even though oothecae of S. limbata were spatially clustered, some oothecae in a (statistically defined) cluster escaped parasitism when overall oothecal densities were low. This pattern suggests that when oothecae are sparsely distributed, Podagrion wasps exploit only a fraction of the oothecae available locally, even though the oothecae are strongly aggregated relative to their overall density. We suggest this lack of congruency in the scales of oothecal deposition and parasitism at low densities (which is absent when oothecae are at high densities) may be explained in part by behavioral aspects of the parasite's reproduction, including increased host fidelity by relatively sedentary female parasites. Received: June 13, 2000 / Accepted: October 16, 2000  相似文献   

13.
ABSTRACT.
  • 1 The spatial patterns of parasitism of the cabbage root fly caused by the cynipid parasitoid Trybliographa rapae (Westw.) have been studied in a laboratory system, within field cages and in a natural situation.
  • 2 Continuous observations during the laboratory experiments showed the parasitoids to spend proportionately more time on the patches of high host density. This resulted in the per cent parasitism per patch being directly density dependent.
  • 3 Similar patterns of parasitism were found from the field cage system, and also from experiments using the natural parasitoid population and either manipulated or natural host densities.
  • 4 While mutual interference was marked in the laboratory experiments, there was little or no sign of it within the larger field cages.
  相似文献   

14.
15.
Abstract The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (~ 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark‐recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2‐ or 3‐year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host–parasite dynamics will help in the conservation management of both the host and its parasites.  相似文献   

16.
17.
The impact of parasites on population dynamics is well documented, but less is known on how host population density affects parasite spread. This relationship is difficult to assess because of confounding effects of social structure, population density, and environmental conditions that lead to biased among-population comparisons. Here, we analyzed the infestation by two groups of nematodes (gastro-intestinal (GI) strongyles and Trichuris) in the roe deer (Capreolus capreolus) population of Trois Fontaines (France) between 1997 and 2007. During this period, we experimentally manipulated population density through changes in removals. Using measures collected on 297 individuals, we quantified the impact of density on parasite spread after taking into account possible influences of date, age, sex, body mass, and weather conditions. The prevalence and abundance of eggs of both parasites in females were positively related to roe deer density, except Trichuris in adult females. We also found a negative relationship between parasitism and body mass, and strong age and sex-dependent patterns of parasitism. Prime-age adults were less often parasitized and had lower fecal egg counts than fawns or old individuals, and males were more heavily and more often infected than females. Trichuris parasites were not affected by weather, whereas GI strongyles were less present after dry and hot summers. In the range of observed densities, the observed effect of density likely involves a variation of the exposure rate, as opposed to variation in host susceptibility.  相似文献   

18.
Progeny production ofBiosteres (Opius) longicaudatus Ashmead, a larvalpupal parasite of the Caribbean fruit fly,Anastrepha suspensa (Loew) was affected by host availability, previous ovipositional experience, and parasite density and age. Parasitization rates were evaluated in 24.5 cm3 ovipositional cages at parasite densities of 25, 125, and 250 male-female pairs by exposingB. longicaudatus adults to (a) 500A. suspensa larvae for a 24 h period or (b)ad libitum host larvae for each of the 14 days following eclosion. The mean numbers of parasite progeny produced at the 25, 125, and 250 densities were 1076, 1896, and 2038, respectively. The number of progeny produced per surviving female parasite was inversely proportional to the adult parasite density and relatively more female progeny were produced as the adult parasites aged. Host mortality was significantly higher among parasitized larvae. Maximum rearing efficiency was achieved at the 125 density.  相似文献   

19.
  • 1 For their larval development, parasitoids depend on the quality and quantity of resources provided by a single host. Therefore, a close relationship is predicted between the size of the host at parasitism and the size of the emerging adult wasp. This relationship is less clear for koinobiont than for idiobiont parasitoids.
  • 2 As size differentiation in host species exhibiting sexual size dimorphism (SSD) is likely to occur already during larval development, in koinobiont larval endoparasitoids the size of the emerging adult may also be constrained based on the sex of the host caterpillar.
  • 3 Sex‐specific growth trajectories were compared in unparasitised Plutella xylostella caterpillars and in second and fourth instar hosts that were parasitised by the solitary larval koinobiont endoparasitoid Diadegma semiclausum. Both species exhibit SSD, where females are significantly larger than males.
  • 4 Healthy female P. xylostella caterpillars developed significantly faster than their male conspecifics. Host regulation induced by D. semiclausum parasitism depended on the instar attacked. Parasitism in second‐instar caterpillars reduced growth compared to healthy unparasitised caterpillars, whereas parasitism in fourth‐instar caterpillars arrested development. The reduction in growth was most pronounced in hosts producing male D. semiclausum.
  • 5 Parasitism itself had the largest impact on host growth. SSD in the parasitoid is mainly the result of differences in growth rate of the parasitoid–host complex producing male and female wasps and differences in exploitation of the host resources. Female wasps converted host biomass more efficiently into adult biomass than males.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号