首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

2.
Sicher RC 《Plant physiology》1982,70(2):366-369
The enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase displayed near-maximal activity in isolated, intact barley (Hordeum vulgare L. cv. Pennrad) mesophyll protoplasts. The carboxylase deactivated 40 to 50% in situ when protoplasts were dark-incubated 20 minutes in air-equilibrated solutions. Enzyme activity was fully restored after 1 to 2 minutes of light. Addition of 5 millimolar NaHCO3 to the incubation medium prevented dark-inactivation of the carboxylase. There was no permanent CO2-dependent activation of the protoplast carboxylase either in light or dark. Activation of the carboxylase from ruptured protoplasts was not increased significantly by in vitro preincubation with CO2 and Mg2+. In contrast to the enzyme in protoplasts, the carboxylase in intact barley chloroplasts was not fully reactivated by light at atmospheric CO2 levels. The lag phase in carbon assimilation was not lengthened by dark-adapting protoplasts to low CO2 demonstrating that light-activation of the carboxylase was not involved in photosynthetic induction. Irradiance response curves for reactivation of the the carboxylase and for CO2 fixation by isolated barley protoplasts were similar. The above results show that there was a fully reversible light-activation of the carboxylase in isolated barley protoplasts at physiologically significant CO2 levels.  相似文献   

3.
Arundinella hirta L. is a C4 plant having an unusual C4 leaf anatomy. Besides mesophyll and bundle sheath cells, A. hirta leaves have specialized parenchyma cells which look morphologically like bundle sheath cells but which lack vascular connections and are located between veins, running parallel to them. Activities of phosphoenolpyruvate and ribulose-1,5-bisphosphate carboxylases and phosphoenolpyruvate carboxykinase, NADP-and NAD-malic enzymes were determined for whole leaf extracts and isolated mesophyll protoplasts, specialized parenchyma cells, and bundle sheath cells. The data indicate that A. hirta is a NADP-malic enzyme type C4 species. In addition, specialized parenchyma cells and bundle sheath cells are enzymatically alike. Compartmentation of enzymes followed the C4 pattern with phosphoenolpyruvate carboxylase being restricted to mesophyll cells while ribulose-1,5-bisphosphate carboxylase and decarboxylating enzymes were restricted to bundle sheath and specialized parenchyma cells.  相似文献   

4.
Two strains of marine Synechococcus possessed a much greater potential for photorespiration than other marine algae we have studied. This conclusion was based on the following physiological and biochemical characteristics: a) a light-dependent O2 inhibition of photosynthetic CO2 assimilation at atmospheric O2 concentrations. The degree of inhibition was dependent on the relative concentrations of dissolved O2 and CO2, being greatest at 100% O2 with no extra bicarbonate added to the medium; b) actively photosynthesizing cells had high levels of ribulose-1,5-bisphosphate carboxylase compared with phosphoenolpyruvate carboxylase; ribulose-1,5-bisphosphate oxygenase activities were three times greater than ribulose-1,5-bisphosphate carboxylase activities; c) cells photosynthesizing in 21% O2, showed significant 14C-labelling of phosphoglycolate and glycolate and the percentage of total carbon-14 incorporated into these two compounds increased when the O2 concentration was 100%; d) at 100% O2, there was a post-illumination enhanced rate of O2 consumption, which was three times greater than dark respiration, and the rate declined with increasing bicarbonate concentrations. The inhibitory effect of O2 on photosynthesis did not appear to be solely due to photorespiration, since O2 inhibition of photosynthetic O2 evolution was much greater than that of photosynthetic CO2 assimilation. Also, O2 inhibition of photosynthetic O2 evolution declined only slightly with decreasing light intensities, while the inhibition of CO2 assimilation declined rapidly with decreasing light intensity.  相似文献   

5.
Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with a construct encoding the mature form of tobacco (Nicotiana tabacum L.) carbonic anhydrase (CA) under the control of a strong constitutive promoter. Expression of the tobacco CA was detected in transformant whole-leaf and bundle-sheath cell (bsc) extracts by immunoblot analysis. Whole-leaf extracts from two CA-transformed lines demonstrated 10% to 50% more CA activity on a ribulose-1,5-bisphosphate carboxylase/oxygenase-site basis than the extracts from transformed, nonexpressing control plants, whereas 3 to 5 times more activity was measured in CA transformant bsc extracts. This increased CA activity resulted in plants with moderately reduced rates of CO2 assimilation (A) and an appreciable increase in C isotope discrimination compared with the controls. With increasing O2 concentrations up to 40% (v/v), a greater inhibition of A was found for transformants than for wild-type plants; however, the quantum yield of photosystem II did not differ appreciably between these two groups over the O2 levels tested. The quantum yield of photosystem II-to-A ratio suggested that at higher O2 concentrations, the transformants had increased rates of photorespiration. Thus, the expression of active tobacco CA in the cytosol of F. bidentis bsc and mesophyll cells perturbed the C4 CO2-concentrating mechanism by increasing the permeability of the bsc to inorganic C and, thereby, decreasing the availability of CO2 for photosynthetic assimilation by ribulose-1,5-bisphosphate carboxylase/oxygenase.  相似文献   

6.
Beer S  Israel A 《Plant physiology》1986,81(3):937-938
Ulva, a common green seaweed, performs at the biochemical level as a typical C3 plant. Over 90% of label was found in glycerate 3-phosphate following a 3 second 14C pulse in the light, and the label was subsequently transferred to sugars. Also, the level of ribulose-1,5-bisphosphate carboxylase activity in crude extracts was about 10 times higher than that of phosphoenolpyruvate carboxylase. Concerning gas exchange, photosynthetic rates of Ulva showed no O2 sensitivity, indicating that photorespiratory CO2 losses are repressed as in C4 plants. This apparent anomaly could be explained by the efficient HCO3 uptake system of Ulva which might concentrate CO2 to the chloroplasts, thus suppressing the oxygenase activity of ribulose-1,5-bisphosphate carboxylase.  相似文献   

7.
Photosynthetic CO2-fixation of mesophyll protoplasts of lambs lettuce [Valerianella locusta (L.) Betcke] was inhibited by short time exposure to Cd+. Inhibition was due to uptake of the metal ion into the protoplasts and increased with increasing Cd2+ concentrations and the time of preincubation. A 10 min pretreatment at 2 mM Cd2+ reduced CO2-fixation by 40–60%. Inhibition of photosynthesis was independent of the light intensity to which the protoplasts were exposed. Measurement of the lightinduced electrochromic pigment absorption change at 518nm and chlorophyll fluorescence studies revealed that primary photochemical reactions associated with the thylakoid membranes were not affected by the metal ion. Also, light activation of the ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) was not inhibited by Cd2+. Under rate-limiting CO2 concentrations, inhibition of CO2-fixation was smaller than at Vmax of CO2 reduction indicating that the carboxylation reaction of the Calvin cycle is not susceptible to Cd2+. Cd2+ treatment of protoplasts significantly extended the lagphase of CO2-supported O2-evolution and partly inhibited light activation of the glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) and the ribulose-5-phosphate kinase (EC 2.7.1.19). Measurement of relative concentrations of [14C]-labeled Calvin cycle intermediates showed that Cd2+ caused a decrease in the 3-phosphoglycerate/triose phosphate ratio and an increase in the triose phosphate/ribulose-1,5-bisphosphate ratio. It is concluded that in protoplasts Cd2+ affects photosynthesis mainly at the level of dark reactions and that the site of inhibition may be localized in the regenerative phase of the Calvin cycle.  相似文献   

8.
Isolated mesophyll protoplasts from Valerianella locusta L. were subjected to freeze-thaw cycles. Subsequently, steady-state pool sizes of 14C-labeled intermediates of the photosynthetic carbon reduction cycle were determined by high performance liquid chromatography. Protoplasts in which CO2 fixation was inhibited by preceding freezing stress, showed a strong increase in the proportion of fructose-1,6-bisphosphate, sedoheptulose-1,7-bisphosphate and triose phosphates. These results indicate an inhibition of the activities of stromal fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase. Furthermore, freezing stress caused a slight increase in the proportion of labeled ribulose-1,5-bisphosphate, which may be based on an inhibition or ribulose bisphosphate carboxylase activity. It was shown earlier (Rumich-Bayer and Krause 1986) that freezing-thawing readily affects photosynthetic CO2 assimilation independently of thylakoid inactivation. The present results are interpreted in terms of an inhibition of the light-activation system of the photosynthetic carbon reduction cycle, caused by freezing stress.Abbreviations FBP Fructose-1,6-bisphosphate - HMP Hexose Monophosphates - PGA 3-phosphoglycerate - PMP Pentose Monophosphates - RBP Ribulose-1,5-bisphosphate - SBP Sedoheptulose-1,7-bisphosphate - TP Triose Phosphates  相似文献   

9.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

10.
Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO2 compensation points at different O2 levels, which is typical of C4 plants, yet it does show about 4% inhibition of net photosynthesis by 21% O2 at 30°C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C4 pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C3 cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial 14C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO2 is fixed into C4 acids (malate and aspartate), whereas about 20% of the CO2 directly enters the C3 cycle. This is consistent with the high activity of enzymes for CO2 fixation by the C4 pathway and the substantial activity of enzymes of the C3 cycle in the mesophyll cells. Therefore, F. brownii appears to have some capacity for C3 photosynthesis in the mesophyll cells and should be considered a C4-like species.  相似文献   

11.
The exchange properties of the activator CO2 of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO2 on the enzyme both in vitro and in situ. Modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in intact chloroplasts during a light/dark cycle was associated with a similar modulation in carboxyarabinitol-1,5-bisphosphate-trapped CO2. The exchange kinetics of the activator CO2 were monitored by activation of the enzyme to steady state in the presence of 12CO2, followed by addition of 14CO2 and determination of the amount of labeled CO2 trapped on the enzyme by carboxyarabinitol-1,5-bisphosphate. Rate constants (Kobs) for exchange with both the purified enzyme (0.45 min−1) and in illuminated chloroplasts (0.18 min−1) were comparable to the observed rate constants for enzyme activation under the two conditions. A similar exchange of the activator CO2 was not observed in chloroplasts in the dark. Kinetic analysis of the exchange properties of the purified enzyme were consistent with an equilibrium between active and inactive forms of the enzyme during steady state activation.  相似文献   

12.
Belknap WR 《Plant physiology》1983,72(4):1130-1132
Partially purified intact chloroplasts were prepared from batch cultures of both wild type (Wt) and a mutant strain of Chlamydomonas reinhardtii. Protoplasts were generated from log phase cultures of Wt (137c) and the phosphoribulokinase-deficient mutant F60 by incubation of the cells in autolysine. These protoplasts were suspended in an osmoticum, cooled, and then subjected to a 40 pounds per square inch pressure shock using a Yeda pressure bomb. The resulting preparation was fractionated on a Percoll step gradient which separated the intact chloroplasts from both broken chloroplasts and protoplasts.

The chloroplast preparation was not significantly contaminated with the cytoplasmic enzyme activity phosphoenolpyruvate carboxylase (>5%), and contained (100%) stromal enzyme activity ribulose-1,5-bisphosphate carboxylase. The chloroplast preparation is significantly contaminated by mitochondria, as determined by succinate dehydrogenase activity. Chloroplasts prepared from Wt cells retained CO2-dependent O2 photoevolution at rates in excess of 60 micromoles per milligram chlorophyll per hour, an activity which is severely inhibited by the addition of 10 millimolar KH2PO4. The chloroplasts are osmotically sensitive as determined by ferricyanide-dependent O2 photoevolution.

  相似文献   

13.
A mutant of Arabidopsis thaliana has been isolated in which ribulose-1,5-bisphosphate carboxylase is present in a nonactivatable form in vivo. The mutation appears to affect carboxylase activation specifically, and not any other enzyme of the photosynthesis or photorespiratory cycles. The effect of the mutation on carboxylase activation is indirect, inasmuch as the properties of ribulose-1,5-bisphosphate carboxylase purified from the mutant are not distinguishable from those of the wild type enzyme. The mutant requires high levels of atmospheric CO2 for growth because photosynthesis is severely impaired in atmospheres containing normal levels of CO2, irrespective of the atmospheric O2 concentration. In this respect, the mutant is distinguished from previously described high-CO2 requiring mutants of Arabidopsis which have defects in photorespiratory carbon or nitrogen metabolism.  相似文献   

14.
Activities of Calvin-Benson cycle enzymes were found in protoplasts of guard cells from Vicia faba L. The activities of NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPD) and ribulose-1,5-bisphosphate carboxylase (RuBPC) were 2670 and 52 micromoles per milligrams chlorophyll per hour, respectively. Activities of NADP-GAPD and RuBPC in guard cells were increased by red light illumination, and the light activations were inhibited completely by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. Enzymes related to the Calvin-Benson cycle such as 3-phosphoglycerate kinase (PGAK), triose phosphate (TP) isomerase, and fructose-1,6-bisphosphatase (FBPase) were shown to be present in guard-cell chloroplasts. From these results, we conclude that the photosynthetic carbon reduction pathway is present in guard-cell chloroplasts of Vicia faba. We compared these enzyme activities in guard cells with those in mesophyll cells. The activities of NADP-GAPD and PGAK were more than several-fold higher and that of TP isomerase was much higher in guard-cell chloroplasts than in mesophyll chloroplasts. In contrast, activities of RuBPC and FBPase were estimated to be roughly half of those in mesophyll chloroplasts. High activities of PGAK, NAD-GAPD, and TP isomerase were found in fractions enriched in cytosol of guard cells. Illumination of guard-cell protoplasts with red light increased the cellular ATP/ADP ratio from 5 to 14. These results support the interpretation that guard cells utilize a shuttle system (e.g. phosphoglycerate [PGA]/dihydroxyacetone phosphate [DHAP] shuttle) for an indirect transfer of ATP and reducing equivalents from chloroplasts to the cytosol.  相似文献   

15.
H. Schnabl 《Planta》1980,149(1):52-58
Isolated, purified mesophyll and guard-cell protoplasts of Vicia faba L. and Allium cepa L. were exposed to 14CO2 in the light and in the dark. The guard-cell protoplasts of Vicia and Allium did not show any labeling in phosphorylated products of the Calvin cycle, thus appearing to lack the ability to reduce CO2 photosynthetically. In Vicia, high amounts of radioactivity (35%) appeared in starch after 60-s pulses of 14CO2 both in the light and in the dark. Presumably, the 14CO2 is fixed into the malate via PEP carboxylase and then metabolized into starch as the final product of gluconeogenesis. This is supported by the fact that guard-cell protoplasts exposed to malic acid uniformly labeled with 14CO2 showed high amounts of labeled starch after the incubation, whereas cells labeled with [4-14C]malate had minimal amounts of labeled starch (1/120).In contrast, the starch-deficient Allium, guard-cell protoplasts did not show any significant 14CO2 fixation. However, adding PEP to an homogenate stimulated 14CO2 uptake, thus supporting the interpretation that the presence of starch as a source of PEP is necessary for incorporating CO2 and delivering malate. With starch-containing Vicia guard-cell protoplasts, the correlation between changes in volume and the interconversion of malate and starch was demonstrated. It was shown that the rapid gluconeogenic conversion of malate into starch prevents an increase of the volume of the protoplasts, whereas the degradation of starch to malate is accompanied by a swelling of the protoplasts.Abbreviations GCPs guard-cell protoplasts - MCPs mesophyll cell protoplasts - PEP phosphoenolpyruvate - DTT dithiothreitol - 3-PGA 3-phosphoglyceric acid - RiBP ribulose 1,5 bisphosphate - MDH malate dehydrogenase - MES 2-(N-morpholino)ethane sulfonic acid - CAM crassulacean acid metabolism  相似文献   

16.
《BBA》1987,894(2):165-173
The capacity of ribulose-1,5-bisphosphate carboxylase to bind reversibly chloroplast metabolites which are the substrates for both thylakoid and stromal enzymes was assessed using spinach chloroplasts and chloroplast extracts and with pure wheat ribulose-1,5-bisphosphate carboxylase. Measurements of the rate of coupled electron flow to methyl viologen in ‘leaky’ chloroplasts (which retained the chloroplast envelope and stromal enzymes but which were permeable to metabolites) and also with broken chloroplasts and washed thylakoids were used to study the effects of binding ADP and inorganic phopshate to ribulose-1,5-bisphosphate carboxylase. The presence of ribulose-1,5-bisphosphate carboxylase significantly altered the values obtained for apparent Km for inorganic phosphate and ADP of coupled electron transport. The Km (Pi) in washed thylakoids was 60–80 μM, in ‘leaky’ chloroplasts it was increased to 180–200 μM, while in ‘leaky’ chloroplasts preincubated with KCN and ribulose 1,5-bisphosphate the value was decreased to 40–50 μM. Similarly, the Km (ADP) of coupled electron transport in washed thylakoids was 60–70 μM, in ‘leaky’ chloroplasts it was 130–150 μM and with ‘leaky’ chloroplasts incubated in the presence of KCN and ribulose 1,5-bisphosphate a value of 45–50 μM was obtained. The ability of ribulose 1,5-bisphosphate carboxylase to reduce the levels of free glycerate 3-phosphate in the absence of ribulose 1,5-bisphosphate was examined using a chloroplast extract system by varying the concentrations of stromal protein or purified ribulose 1,5-bisphosphate carboxylase. The effect of binding glycerate 3-phosphate to ribulose-1,5-bisphosphate carboxylase on glycerate 3-phosphate reduction was to reduce both the rate an the amount of NADPH oxidation for a given amount of glycerate 3-phosphate added. The addition of ribulose 1,5-bisphosphate reinitiated NADPH oxidation but ATP or NADPH did not. Incubation of purified ribulose-1,5-bisphosphate carboxylase with carboxyarabinitolbisphosphate completely inhibited the catalytic activity of the enzyme and decreased inhibition of glycerate-3-phosphate reduction. Two binding sites with different affinities for glycerate 3-phosphate were observed with pure ribulose-1,5-bisphosphate carboxylase.  相似文献   

17.
Photosynthetically-active protoplasts isolated from isogenic sets of diploid-tetraploid and tetraploid-octoploid alfalfa (Medicago sativa L.) leaves were used to investigate the consequences of polyploidization on several aspects related to photosynthesis at the cellular level. Protoplasts from the tetraploid population contained twice the amount of DNA, ribulose-1,5-bisphosphate carboxylase (RuBPCase), chlorophyll (Chl), and chloroplasts per cell compared to protoplasts from the diploid population. Although protoplasts from the octoploid population contained nearly twice the number of chloroplasts and amount of Chl per cell as tetraploid protoplasts, the amount of DNA and RuBPCase per octoploid cell was only 50% higher than in protoplasts from the tetraploid population. The rate of CO2-dependent O2 evolution in protoplasts nearly doubled with an increase in ploidy from the diploid to tetraploid level, but increased only 67% with an increase in ploidy from the tetraploid to octoploid level. Whereas leaves and protoplasts had similar increases in RuBPCase, DNA, and Chl with increase in ploidy level, it was concluded that increased cell volume rather than increased cell number per leaf is responsible for the increase in leaf size with ploidy.  相似文献   

18.
Partially purified ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) was isolated from diploid and tetraploid cultivars of ryegrass (Lolium perenne L.) using two separate methods. The apparent Km (CO2) values for the enzymes prepared by either method did not differ significantly between diploid and tetraploid when assayed by two separate techniques. The unpurified enzymes from freshly lysed (and fully functional) protoplasts of both diploid and tetraploid cultivars gave virtually identical apparent Km (CO2) values. There was no indication of large differences in affinity for CO2 of illuminated intact protoplasts from the two cultivars.  相似文献   

19.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

20.
CO2 gas exchange, ribulose-1,5-bisphosphate, and electron transport have been measured in leaves of a yellow-green mutant of wheat (Triticum durum var Cappelli) and its wild type strain grown in the field. All these parameters, expressed on leaf area basis, were similar in both genotypes except electron transport which was more than double in the wild type. These results, treated according to a recent photosynthesis model for C3 plants, seem to indicate that the electron transport rate of mutant leaves is not sufficient to support the carboxylation derived through both the assimilation rate and the in vitro ribulose-1,5-bisphosphate carboxylase activity. It is suggested that under our experimental conditions photosynthetic electron transport is not the sole energy-dependent determinant of ribulose-1,5-bisphosphate regeneration in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号