首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
We previously showed that cloned, antigen-specific, Ia-restricted L3T4a+ T cell lines can be cytolytic for antigen-pulsed B cell lymphoma targets. Such cells can also, under different experimental conditions, activate B cells to proliferate and secrete immunoglobulin. In the present experiments, we show that this functional phenotype is a common one among a panel of cloned T cell lines. In keeping with this finding, freshly isolated, antigen-activated lymph node T cells show similar functional properties. Such cytolytic L3T4a+ T cells differ from classical H-2K/D-restricted cytolytic T cells in two distinct ways. First, Ia-restricted cytolytic T cells can kill bystander targets, whereas H-2K/D-specific cytolytic T cells do not. Second, in testing a panel of target cells by using lectin-mediated cytolysis, Ia-restricted cytolytic clones reveal large differences in target cell susceptibility, whereas all targets are similarly susceptible to H-2K/D-specific killer cells. Finally, evidence is presented that both direct and bystander killing effected by L3T4a+ T cells are mediated by the same soluble factors, in that there is a strong positive correlation of these two activities for individual cloned lines. The relevant mediators appear to be lymphotoxin and IFN-gamma, although the latter molecule by itself is not cytolytic on our target lines.  相似文献   

2.
Cloned L3T4a+ antigen-specific, class II-restricted T cells can be subdivided by function and by cytokine production. All cloned T cell lines produce T cell growth factors that can be distinguished by the ability of monoclonal antibodies to inhibit the proliferation of cytokine-dependent T cell lines induced by these T cell growth factors. From these types of analyses, it has been shown that all cloned T cells that help hapten-specific B cells secrete immunoglobulin, produce interleukin 4 (IL 4). Those cloned T cells that fail to help for anti-hapten responses produce neither IL 4 nor interleukin 2 (IL 2), yet release an activity that induces the proliferation of the cytokine-dependent T cell line, HT-2. Additional analysis of the HT-2 stimulating activity has shown that it is indistinguishable from granulocyte macrophage-colony stimulating factor (GM-CSF)--this activity being produced by all cloned T cells tested. Thus GM-CSF is a product of all cloned L3T4a+ T cell lines tested thus far, and can serve as a T cell growth factor for HT-2, as well as a co-factor for in vivo derived T cells.  相似文献   

3.
Supernatants from some mouse helper T cell (TH) lines contain an activity that can enhance IgE production by lipopolysaccharide (LPS)-stimulated B cells by at least two orders of magnitude. During purification, this activity could not be resolved from B cell stimulatory factor-1 (BSF-1). Highly purified BSF-1 from a different source, the T lymphoma cell line EL-4, enhanced IgE production to the same extent as TH supernatants, which suggests that BSF-1 is responsible for this increase in IgE production. Monoclonal antibody to BSF-1 totally inhibits the IgE-enhancing activity of a TH supernatant, lending further support to this conclusion. The effects of BSF-1 on LPS-stimulated B cells are specific for IgE and, as previously reported, IgG1 and IgG3, because the levels of IgM, IgG2a, IgG2b, and IgA in the cultures change relatively little when BSF-1 is added.  相似文献   

4.
Lymphokine activities in conditioned medium from activated helper T cell lines are most commonly defined by the proliferation of "specific" lymphokine-dependent cell lines. Various sublines of IL 2-dependent (and ostensibly specific) HT-2 and CTLL cells have now been shown to proliferate in response to BSF-1/IL 4 as well. After activation with antigen or mitogen, D10.G4.1, an antigen-specific cloned T helper cell that has recently been shown to produce IL 4 but not IL 2, secretes two distinct cytokines that induce the growth of HT-2 cells. These "T cell growth factors" (TCGF) can be separated by reversed phase high-performance liquid chromatography (RP-HPLC). The TCGF activity of one of these factors can be blocked by 11B11, an antibody specific for IL 4. The second TCGF activity is not affected by 11B11 or by antibodies specific for IL 2. This TCGF activity can be neutralized by a goat polyclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), and has a RP-HPLC elution profile identical to that of recombinant GM-CSF. Recombinant GM-CSF induces both proliferation and long-term growth of HT-2 but not CTLL cells, and this activity can be neutralized by the same antibody to GM-CSF. GM-CSF is best known as a factor that induces the maturation and growth of granulocytes and macrophages from bone marrow-derived hematopoietic precursor cells. The ability of GM-CSF to induce the growth of certain T cell lines indicates that this molecule may play a role in T cell-mediated immune responses, either as an autocrine growth factor or a paracrine stimulus from both lymphoid and nonlymphoid tissues that produce this cytokine.  相似文献   

5.
A human T4+/Leu-8+ T cell clone (YA2) was established by phytohemagglutinin activation and interleukin 2 (IL 2) propagation. Functional characterization of this clone demonstrated that it provided potent help towards Ig production by pokeweed mitogen-stimulated B cells in the presence of small numbers of autologous T cells or by Staphylococcus aureus Cowan I (SAC)-activated B cells in the presence of B cell growth factor (BCGF). YA2 provided no help to resting B cells and minimal help to either unactivated B cells cultured with BCGF or SAC-activated B cells. Supernatant generated from clone YA2 by IL 2 stimulation had significant B cell differentiation activity but no BCGF or IL 2 activity. Thus, YA2 is a T4+/Leu-8+ potent direct helper only to B cells that are activated and proliferating due to its selective secretion of a differentiation factor, and not an activation and growth factor. The availability of phenotypically defined cloned populations of T cells with restricted functional helper activity related to the secretion of selected B cell tropic factors should prove useful in the dissection of the role of individual T cell subsets in the regulation of the human B cell cycle.  相似文献   

6.
We report here the role of B cell stimulatory factors in the induction of antigen-specific proliferation of affinity-purified small B lymphocytes. TI-1 antigens such as TNP-LPS and TNP-BA induced proliferation of hapten-binding B cells in the absence of exogenous B cell stimulatory factors. TI-2 antigens such as TNP-Ficoll required the co-stimulator BSF-1 to induce antigen-specific proliferation, and this response could be augmented by IL 1. TD antigens such as TNP-OVA were unable to induce antigen-specific proliferation either in the absence or presence of B cell stimulatory factors, and showed an absolute activation requirement for carrier-specific helper T cells. No role for IL 2 or BCGF II could be found in the factor-dependent proliferative response of hapten-binding B cells to TI-2 antigens, either as primary co-stimulators or as modulators of the response obtained with TNP-Ficoll, BSF-1, and IL 1. In contrast, concentrations of IFN-gamma that were nontoxic for normal B cells and B cell hybrids effectively abrogated the proliferative response of affinity-purified cells to TNP-Ficoll, BSF-1, and IL 1. By all of these criteria, the B cell activation requirements of TI-2 antigens appear to be identical to those previously published for soluble anti-IgM antibodies.  相似文献   

7.
Regulation of murine T cell proliferation by B cell stimulatory factor-1   总被引:5,自引:0,他引:5  
The proliferation of mitogen-activated primary T cells, antigen-activated memory T cells from mixed leukocyte culture, and antigen-dependent alloreactive T cell clones in response to purified murine recombinant B cell stimulatory factor-1 (also known as interleukin 4) was examined. We found that B cell stimulatory factor-1 (BSF-1) stimulated optimal proliferation of these T cells only after their recent activation by antigen or mitogen. Analysis of cell surface BSF-1 receptor expression indicated that although T cell activation is accompanied by a small increase in BSF-1 receptor expression, the cells also express BSF-1 receptors prior to activation at a time when they do not proliferate in response to BSF-1. BSF-1 was as effective a stimulus as interleukin 2 for inducing proliferation of the Lyt-2+ subpopulation of concanavalin A-activated murine spleen cells and an alloreactive cytolytic T cell clone. However, the L3T4+ subpopulation of concanavalin A-activated spleen and an alloreactive helper T cell clone were less responsive to BSF-1 than to interleukin 2. Taken together, the data indicate an important role for BSF-1 in the regulation of normal T cell proliferation.  相似文献   

8.
BSF-1/interleukin-4, a product of activated T cells, has multiple biological activities that affect cells of most hematopoietic lineages. Among these is the ability of BSF-1 to costimulate the growth of mast cells and regulate the production of IgE. We demonstrate here that BSF-1 mRNA is expressed by a majority of transformed mast cell lines and by 5 IL-3-dependent non-transformed mast cell lines. BSF-1 activity, including the ability to enhance the growth of IL-3-dependent mast cells, was detected in the supernatants of transformed mast cells. The role of BSF-1 as a mast cell growth factor, its constitutive production by transformed mast cells, and the lack of IL-3 production by most of these cells raise the possibility that BSF-1 may act as an autocrine growth factor for some transformed mast cells. Furthermore, production of BSF-1 mRNA by nontransformed cells indicates that mast cells may be an important physiologic source of this factor.  相似文献   

9.
Retrovirus infection alters growth factor responses of T lymphocytes   总被引:2,自引:0,他引:2  
A murine helper/inducer T cell clone, D10.G4, has been infected with Kirsten-murine sarcoma virus (KiSV) pseudotyped with an amphotropic murine leukemia virus. The resultant Ki-ras-expressing lines (KiSV-D10) remain dependent on exogenous factors for continued growth but display distinctly different mitotic responses to certain cytokines as compared to the uninfected parent clone. Unlike the parent D10.G4 cells, these KiSV-D10 cells can be maintained in vitro indefinitely in the presence of recombinant interleukin 2 (IL 2), and they all display a maximal proliferative response to purified or recombinant interleukin 1 (IL 1). The IL 1-induced proliferation is shown not to be dependent or secretion of the T cell autocrine growth factors IL 2 or B cell stimulatory factor-1 (BSF-1). The KiSV-D10 lines show certain differences from one another and parent D10.G4 cells in their secretory and proliferative responses to T cell receptor- and BSF-1 mediated signals. These viral oncogene-expressing T cell lines, which remain responsive to and dependent on physiologic growth factors, should prove valuable for analyzing the mechanisms of action of single oncogenes and the intracellular events in T lymphocyte activation.  相似文献   

10.
B cell stimulatory factor 1 (BSF-1) (IL-4) was shown to synergize with phorbol esters or with monoclonal anti-TCR antibody in stimulation of the development of CTL from small resting murine T cells. IL-2 also synergized with PMA in such differentiation but was less effective than BSF-1. The combination of these two lymphokines with PMA had the most potent effect on the development of CTL. BSF-1 plus PMA stimulated a significant increase in the intracellular content of N-benzyloxycarbonyl-L-lysine thiobenzylester esterase, a granule-associated biochemical marker, whereas IL-2 plus PMA was only marginally effective. Depletion of L3T4+ cells did not result in the abrogation of these effects. Lyt-2+ T cells that were incubated for 72 h with BSF-1 plus PMA accumulated N-benzyloxycarbonyl-L-lysine thiobenzylester esterase and secreted this intragranular marker after interaction with immobilized anti-T cell receptor mAb. These BSF-1/PMA-stimulated Lyt-2+, L3T4- T cells were also able to kill FcR positive target cells in a retargeting assay with a mAb to murine T3 Ag, providing evidence that BSF-1 plus PMA acted directly on precursors of cytotoxic T cells.  相似文献   

11.
Granular lymphocytes co-expressing the Leu-7 (NK-related) and CD4 (T helper cell) markers are selectively localized in the germinal centers of lymphoid tissues. Leu-7+ cells (greater than 98% of which co-expressed CD4) were isolated from inflammatory tonsils and were cloned by the limiting dilution technique. Clones were analyzed for their phenotypic and functional characteristics. CD4+-Leu-7+ cell-derived clones retained their CD3 and CD4 surface antigens, lost the Leu-7 marker, and acquired HLA-DR determinants. In comparison with clones derived from peripheral blood or tonsil CD4+ cells, CD4+-Leu-7+ tonsil cell-derived clones showed similar low frequencies of cytotoxic precursors. In contrast, the frequency of interleukin 2 (IL 2) and B cell growth factor producing clones was much lower for tonsil CD4+-Leu-7+ cells than for CD4+ blood or tonsil progenitors. We conclude that germinal center CD4+-Leu-7+ cells are a subset of T cells unable to produce IL 2 in response to phytohemagglutinin or anti-CD3 stimulation, which is effective on the majority of T helper cells.  相似文献   

12.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The capacity of B cells to serve as stimulator cells for a primary mixed leukocyte reaction (MLR) was evaluated. Percoll-fractionated B cells were stimulated with lipopolysaccharide and dextran sulfate (L/D) or a B cell stimulatory factor (BSF-1)-containing culture supernatant, and then were fixed before being used as stimulator cells to more precisely define the state of activation associated with MLR stimulatory capacity. It was found that unstimulated B cells or B cells stimulated for 1 day with L/D or BSF-1 were incapable of initiating a primary MLR, whereas B cells incubated for 3 days in L/D were potent stimulators. The differential activity of 1 day L/D- and BSF-1-activated B cells compared with 3 day L/D-activated B cells was not related to the amount of the relevant MHC class I or class II alloantigens on these cell populations, because all three groups had large increments in MHC class II expression in the following order: BSF-1 greater than 3 day L/D greater than 1 day L/D, and had little difference in MHC class I expression. Also, all three populations were capable of stimulating both MHC class I- and class II-specific T cell hybrids. It was concluded that the capacity of 3 day L/D-activated cells to stimulate a primary MLR was due to the elaboration of necessary co-stimulator molecules. We evaluated whether interleukin 1 (IL 1) was the co-stimulator involved. That this was not the case was indicated by two findings. First, 3 day-activated L/D cells failed to express IL 1 activity as measured by a highly sensitive IL 1 assay that utilizes the T cell line D10.G4.1. Second, recombinant IL 1 added to MLR cultures containing 1 day L/D- or BSF-1 activated B cells failed to function as a co-stimulator. In contrast, the phorbol ester PMA was a potent co-stimulator in this system. We conclude from these experiments that appropriately activated B cells can function as stimulators of a primary MLR, and that they elaborate critical co-stimulator molecules, distinct from IL 1, that enable them to function in this regard.  相似文献   

14.
EBV infects human B lymphocytes and induces them to proliferate, to produce Ig, and to give rise to immortal cell lines. Although the mechanisms of B cell activation by EBV are largely unknown, the continuous proliferation of EBV-immortalized B cells is dependent, at least in part, upon autocrine growth factors produced by the same EBV-infected B cells. In the present studies we have examined the influence of monocytes on B cell activation by EBV and found that unlike peripheral blood T cells and B cells, monocytes enhance by as much as 30- to 50-fold virus-induced B cell proliferation and Ig production. Upon activation with LPS, monocytes secrete a growth factor activity that promotes both proliferation and Ig secretion in EBV-infected B cells and thus reproduces the effects of monocytes in these cultures. Unlike a number of other factors, rIFN-beta 2/B cell stimulatory factor 2 (BSF-2)/IL-6 stimulates the growth of human B cells activated by EBV in a manner similar to that induced by activated monocyte supernatants. In addition, an antiserum to IFN-beta that recognizes both IFN-beta 1 and IFN-beta 2 completely neutralizes the B cell growth factor activity of activated monocyte supernatants. These findings demonstrate that IFN-beta 2/BSF-2/IL-6 is a growth factor for human B cells activated by EBV and suggest that this molecule is responsible for B cell growth stimulation induced by activated monocyte supernatants. We have examined the possibility that IFN-beta 2/BSF-2/IL-6 might also be responsible for B cell growth stimulation by supernatants of EBV-immortalized B cells and thus may function as an autocrine growth factor. However, IFN-beta 2/BSF-2/IL-6 is not detectable in supernatants of EBV-immortalized B cells by immunoprecipitation. Also, an antiserum to IFN-beta that neutralizes IFN-beta 2/BSF-2/IL-6 fails to neutralize autocrine growth factor activity. This suggests that autocrine growth factors produced by EBV-immortalized B cells are distinct from IFN-beta 2/BSF-2/IL-6. Thus, the continuous proliferation of EBV-immortalized B cells is enhanced by either autocrine or paracrine growth factors. One of the mediators with paracrine growth factor activity is IFN-beta 2/BSF-2/IL-6.  相似文献   

15.
T cell induction of membrane IL 1 on macrophages   总被引:6,自引:0,他引:6  
We have studied the role of T cells in the induction of a membrane-associated form of interleukin 1 (mIL 1) in murine macrophages. T helper cell clones and a T cell hybridoma induced macrophages to express mIL 1 after an antigen-specific, Ia-restricted interaction. Induction of mIL 1 was proportional to antigen concentration and was increased in the early course of the response in macrophages pretreated in culture with interferon-gamma. mIL 1 activity was detectable 4 hr after interaction with T cells. mIL 1 induction was inhibited by antibodies to either class II molecules or the T cell receptor. Two pathways of T cell-mediated mIL 1 induction could be defined. In the first, T cells, whose protein synthesizing capacity was completely eliminated by pretreatment with the irreversible protein synthesis inhibitor emetine, induced levels of mIL 1 expression indistinguishable from controls. In the second, T cells stimulated by paraformaldehyde-fixed macrophages in the presence of concanavalin A or antigen secreted a soluble factor that induced macrophage mIL 1 expression. Thus, it appears that T cells may induce macrophages to express mIL 1 both by direct cell-cell contact mediated through binding of T cell receptor to the Ia/antigen complex, and through the release of a lymphokine after activation. This lymphokine does not appear to be IL 2, IFN-gamma, BSF-1, or CSF-1.  相似文献   

16.
Hybrid mice of the (B6 X bm12)F1 combination were inoculated i.v. with parental B6 spleen cells to induce a class II graft-vs-host disease (GVH). Such mice failed to generate in vitro cytotoxic T lymphocyte (CTL) responses that were dependent upon L3T4+ T helper cell (Th) function (e.g., anti-B6-TNP) but were capable of generating in vitro CTL responses that could be mediated by Lyt-2+ Th cells (anti-allo class I). When Th function was assayed directly by interleukin 2 (IL 2) secretion, class II GVH animals were found to be deficient in L3T4+ but not Lyt-2+ IL 2-secreting Th cells. This selective deficiency in L3T4+ Th function correlates with a selective decrease in class II GVH mice of host-derived derived L3T4+ T cells. In addition, it was found that the spleens of class II GVH mice contained cells capable of selectively suppressing L3T4+ Th function. In contrast, mice in which a class I + II GVH occurred were depleted of both L3T4+ and Lyt-2+ Th function as assessed by IL 2 production. The findings that class II GVH selectively depletes L3T4+ T cells and T cell functions are discussed with respect to the immune function of distinct T cell subsets in normal and diseased states.  相似文献   

17.
The proliferation and differentiation of human leukemic B cells (B-CLL cells) with anti-Ig and T cell-derived helper factors are described. Stimulation of B-CLL cells with anti-Ig and T helper factors could induce proliferation as well as differentiation into IgM- and IgG-producing cells. Neither anti-Ig nor T helper factors alone could induce any proliferation and/or differentiation of B-CLL cells. Not only whole molecules of anti-Ig but also F(ab')2 fragments could induce proliferation and differentiation of B-CLL cells in the presence of T helper factors, but monovalent Fab' fragments were not effective. Induction of both IgM and IgG with the same idiotype was confirmed by immunofluorescent and SDS-PAGE analysis. By employing an IL 2-dependent cytotoxic T cell line and a TRF-responsive B cell line, T cell factors were separated into a fraction with IL2 activity but no TRF activity and a fraction with TRF activity but no IL 2 activity by chromatofocusing. Anti-Ig and IL 2 fraction could induce proliferation of B-CLL cells, but TRF fraction was not effective for the induction of proliferation in anti-IG-stimulated cells. For IgM and IgG production, anti-Ig and both IL 2 and TRF fractions were required. Depletion of IL 2 fraction in the first 2 days' culture inhibited Ig production, whereas the absence of TRF fraction in the first 2 days did not show any inhibitory effect on Ig production.  相似文献   

18.
Although the existence of autoreactive T cells has been widely reported, the functional capacities of these populations have been less well defined. Studies were therefore carried out to characterize the relationship of autoreactive T cells to antigen-specific major histocompatibility complex (MHC)-restricted T cells in their ability to act as helper cells for the induction of immunoglobulin synthesis by B cells. A number of autoreactive T cell lines and clones were isolated from antigen-primed spleen and lymph node cell populations. Autoreactive T cells were found to proliferate in response to direct recognition of syngeneic I-A or I-E subregion-encoded antigens in the absence of any apparent foreign antigen. It was shown that cloned autoreactive T cells were capable of activating B cell responses through two distinct pathways. After appropriate stimulation by syngeneic cells, autoreactive T cells polyclonally activated primed or unprimed B cells to synthesize IgM antibodies. These activated T cells functioned in these responses through an MHC-unrestricted pathway in which polyclonal responses were induced in both syngeneic and allogeneic B cells. These cloned autoreactive T cells were also able to activate IgG responses by primed B cells through a different activation pathway. In contrast to the polyclonal activation of IgM responses, the induction of IgG antibodies by the same cloned T cells required primed B cells and stimulation with the priming antigen. The activation of B cells to produce IgG was strongly MHC restricted and required the direct recognition by the autoreactive T cells of self MHC determinants expressed on the B cell surface, with no bystander activation of allogeneic B cells. These results indicate that cloned autoreactive T cells resemble antigen-specific MHC-restricted T cells in their ability to function as T helper cells through distinct MHC-restricted and MHC-unrestricted pathways.  相似文献   

19.
Considerable evidence suggests that the high frequency of B cells committed to the IgA isotype in Peyer's patches is regulated by T lymphocytes. To understand more accurately the mechanism of this immunoregulation, an autoreactive T cell line from Peyer's patches was generated by culturing L3T4+ Peyer's patches T cells with syngeneic B cell blasts. The resulting T cell line, designated PT-1, and a clone derived from this line, PT-1.14, stimulated immunoglobulin secretion in spleen B cells with a preferential enhancement of IgA and IgG1 isotypes. Supernatant derived from concanavalin A-stimulated PT-1 or PT-1.14 cells could also enhance IgA secretion if spleen B cells were preactivated with lipopolysaccharide. Peyer's patches T cell supernatant did not contain IgA-specific binding factors. PT-1 supernatant scored positive in lymphokine assays for interleukin (IL)-2, IL-4 (B cell stimulatory factor 1), IL-5 (B cell growth factor II), and interferon-gamma, whereas PT-1.14 supernatant was positive for IL-4 and IL-5 and negative for IL-2 and interferon-gamma. Only IL-5 enhanced IgA secretion in lipopolysaccharide-activated B cells and this response was increased two- to three-fold by IL-4. These results suggest that the type 2 T helper subset which produces both IL-5 and IL-4 plays a primary role in regulating IgA expression.  相似文献   

20.
The growth factor requirements of cloned lines representing two major subsets of CD4+ T cells were examined. The helper subset, which produces IL-4 as its autocrine growth factor, proliferates in response to IL-2 or to IL-4 in the presence of IL-1. The inflammatory subset, which produces IL-2 as its autocrine growth factor, proliferates in response to IL-2 and, in the presence of limiting amounts of IL-2, shows increased proliferation in the presence of IL-4. The inflammatory subset does not proliferate in response to IL-1 plus IL-4. This ability to respond to the combination of IL-1 plus IL-4 correlates with the presence of IL-1R on the cloned lines tested. These data suggest that IL-1 may play a controlling role in the clonal expansion of CD4+ T cells of different functional types. This, in turn, suggests means by which the immune response could be directed into humoral or cell-mediated responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号