首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival of rice (Oryza sativa) upon an extreme rise of the water level depends on rapid stem elongation, which is mediated by ethylene. A genomic clone (OS-ACS5) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, which catalyzes a regulatory step in ethylene biosynthesis, has been isolated from cv IR36, a lowland rice variety. Expression was induced upon short- and long-term submergence in cv IR36 and in cv Plai Ngam, a Thai deepwater rice variety. Under hypoxic conditions, abscisic acid and gibberellin had a reciprocal opposite effect on the activity of OS-ACS5. Gibberellin up-regulated and abscisic acid down-regulated OS-ACS5 mRNA accumulation. Growth experiments indicated that lowland rice responded to submergence with a burst of growth early on, but lacked the ability to sustain elongation growth. Sustained growth, characteristic for deepwater rice, was correlated with a prolonged induction of OS-ACS5. In addition, a more pronounced capacity to convert ACC to ethylene, a limited ACC conjugation, and a high level of endogenous gibberellin(20) were characteristic for the deepwater variety. An elevated level of OS-ACS5 messenger was found in cv IR36 plants treated with exogenous ACC. This observation was concomitant with an increase in the capacity of converting ACC to ethylene and in elongation growth, and resulted in prolonged survival. In conclusion, OS-ACS5 is involved in the rapid elongation growth of deepwater rice by contributing to the initial and long-term increase in ethylene levels. Our data also suggest that ACC limits survival of submerged lowland rice seedlings.  相似文献   

2.
Soybean seedlings (Glycine max L.) were germinated and dark-grown in water-saturated vermiculite (water potential = −0.01 megapascal) for 48 hours, then transferred either to water-saturated vermiculite or to low water potential vermiculite (water potential = −0.30 megapascal). A decrease in growth rate was detectable within 0.8 hour post-transfer to low water potential vermiculite. A fourfold increase in the abscisic acid content of the elongating region was observed within 0.5 hour. At 24 hours post-transfer, hypocotyl elongation was severely arrested and abscisic acid reached its highest measured level: 3.7 nanograms per milligram dry weight (74-fold increase). A comparison of the polyA+ RNA populations isolated at 24 hours post-transfer from the elongating region of water-saturated and low water potential vermiculite-grown seedlings was made by two-dimensional (isoelectric focusing-sodium dodecyl sulfate) polyacrylamide gel analysis of in vitro translation products. It revealed both increases and decreases in the relative amounts of a number of translation products. Rewatering seedlings grown in low water potential vermiculite at 24 hours post-transfer led to a total recovery in growth rate within 0.5 hour, while abscisic acid in the elongating hypocotyl region required 1 to 2 hours to return to uninduced levels. Application of 1.0 millimolar (±) abscisic acid to well-watered seedlings resulted in a 48% reduction in hypocotyl growth rate during the first 2 hours after treatment. Plants treated with abscisic acid for 24 hours had a lower polysome content than control plants. However, hypocotyl growth inhibition in abscisic acid-treated seedlings preceded the decline in polysome content.  相似文献   

3.
The effects of the acylcyclohexanedione-type growth retardant prohexadione calcium on seedling growth and endogenous levels of immunoreactive phytohormone-like substances in shoots of wheat ( Triticum aestivum L. cv. Kanzler) and oilseed rape ( Brassica napus L. ssp. napus cv. Lirajet) were studied. After treatment of seedlings with increasing retardant concentrations in hydroponics, plant height and fresh weight of shoots were reduced by up to 40%. Concomitantly, the amount of immunoreactive gibberellins decreased, on a fresh weight basis, when compared with levels in the shoots of control plants. In contrast, the levels of abscisic acid and dihydrozeatin riboside and isopentenyladenosine-type cytokinins were considerably elevated by the growth retardant. The content of 3-indoleacetic acid decreased slightly. These results suggest that, in addition to its effect on gibberellin content, prohexadione calcium also influences the levels of endogenous abscisic acid and cytokinins.  相似文献   

4.
Effects of kinetin on transpiration rate and abscisic acid content were determined. Leaves from 9-day-old wheat plants (Triticum aestivum L. cv. Weibull's Starke II) were used. —Transpiration rate decreased in excised leaves put in water, but it was maintained at a higher rate when kinetin was supplied. When excised leaves were water stressed by air-drying for 1 h, addition of kinetin resulted in a considerable stimulation of transpiration rate. The effect reached its maximum after 15 h and this level remained relatively unchanged for at least 10 h. Intact seedlings which were stressed before leaf excision, showed only a slight stimulation of kinetin on transpiration rate. — Abscisic acid content slowly increased up to three-fold in 2 days in excised leaves put in water. In excised and water-stressed leaves the abscisic acid content was reduced during the first 24 h and then increased. As the leaves were fully turgid, the increase could not have been caused by water stress. However, both in stressed and unstressed leaves kinetin addition reduced the increase in abscisic acid content. — It is suggested that the stimulation by kinetin on transpiration rate in excised and water stressed leaves was mainly due to the combined effect of (1) a reduction in the activity of endogenous cytokinins, (2) kinetin acting as a ‘substitute’ for the inactivated cytokinins but exerting a stronger effect on transpiration than the endogenous cytokinins, and (3) the ‘extra’ reduction in abscisic acid content caused by the kinetin treatment. Furthermore, the results indicate that changes in cytokinins might be partly responsible for the aftereffect on transpiration.  相似文献   

5.
Greenhouse and field experiments were performed to determine if increased leaf resistance induced by exogenous application of abscisic acid (ABA) could enhance the water status of transplanted bell pepper seedlings. Seedling survival and yield were also monitored in the field experiment. When seedlings were transplanted into either wet or dry potting mix in the greenhouse, ABA increased leaf resistance and leaf water potential. In the field, plots were irrigated either immediately after, or 1 day after transplanting. Under both treatments, ABA application resulted in increased leaf resistance and water potential, but seedling survival and yield were enhanced due to ABA only in plots which were irrigated 1 day after transplanting. It is concluded that antitranspirant application can reduce transplant shock and increase yield of bell pepper.  相似文献   

6.
John Hillman 《Planta》1970,90(3):222-229
Summary Aqueous solutions of indole acetic acid, kinetin, gibberellic acid and abscisic acid were applied singly and in combination to the decapitated stem stump of Phaseolus seedlings. Application of indole acetic acid will not completely replace the intact stem apex with regard to the inhibition of lateral bud extension. The greatest inhibition of bud growth is obtained when indole acetic acid is applied in combination with both kinetin and abscisic acid. Treatment with gibberellic acid causes massive bud growth even in the presence of indole acetic acid, kinetin and abscisic acid. Although both abscisic acid and kinetin have only a slight promoting effect on bud outgrowth when applied singly, these hormones will modify the effects of indole acetic acid and gibberellic acid.  相似文献   

7.
Water and osmotic potentials were measured in leaves of a drought-sensitive ('Ponca') and a drought-resistant ('KanKing') cultivar of winter wheat ( Triticum aestivum L . em. Thell.) to determine if the potentials of the drought-sensitive cultivar could be made similar to those of the drought-resistant cultivar through application of abscisic acid (ABA). Stomatal resistance was also measured. Plants were sprayed with ABA and grown in soil, which was watered or allowed to dry. In well-watered plants, ABA closed the stomata of both cultivars. Stomatal resistance of plants grown without added water and with ABA was less than that of plants grown without added water and without ABA. Under ample water supply, ABA decreased water and osmotic potentials of the drought-sensitive cultivar (Ponca), but had no effect on these potentials in the drought-resistant cultivar (KanKing). Under water-deprived conditions, ABA increased water and osmotic potentials of Ponca, but did not change these potentials in KanKing. The overall effect of ABA was to decrease the differences in the water and osmotic potentials between the two cultivars.  相似文献   

8.
Root and Shoot Growth of Plants Treated with Abscisic Acid   总被引:4,自引:0,他引:4  
Young seedlings of Capsicum annum L., Commelina communis L.and maize (Zea mays L.) were subjected to a mild water-stressingtreatment and/or treated with abscisic acid (ABA). Plants rootedin soil received a soil-drying treatment and their leaves weresprayed with a 10–4 M solution of ABA. Plants grown insolution culture were stressed by the addition of polyethyleneglycol (PEG) to the rooting medium and ABA was also added tothe rooting medium, either with or without PEG. The effectsof both treatments on the growth of roots and shoots and theultimate root: shoot dry weight ratio were very similar. Shootgrowth was limited both by water stress and by ABA application;while there was some evidence that mild water stress and/orABA application may have resulted in a stimulation of root growth.More severe water stress reduced the growth of roots but theoverall effect of stress was to increase the ratio of rootsto shoots. Capsicum annum L., Commelina communis L., Zea mays L., water stress, abscisic acid  相似文献   

9.
10.
以一年生沙枣幼苗为材料,研究了外源脱落酸和外源硅在干旱(T2:SRWC=35%~40%,处理时间30 d)胁迫下沙枣幼苗叶片相对含水量、叶片水势、质膜相对透性、丙二醛(MDA)含量、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的影响。结果表明:沙枣幼苗T2干旱处理时,与对照(ck)相比其叶片相对含水量和水势均极显著降低,质膜相对透性有所增大,沙枣幼苗被受到了一定程度的伤害。同时,向T2干旱处理的幼苗使用外源脱落酸(ABA)后,可以极显著提高其叶片相对含水量和过氧化氢酶活性,极显著降低叶片质膜相对透性和丙二醛含量,叶片水势也有所降低,这说明使用外源脱落酸能够减轻干旱胁迫对沙枣幼苗的伤害。同时,向T2干旱处理的幼苗使用外源硅(Si)时,与未使用外源硅的T2相比其叶片相对含水量和超氧化物歧化酶(SOD)活性极显著上升,叶片水势也有下降趋势,这说明使用外源硅在一定程度上能够缓解干旱胁迫对沙枣幼苗的伤害。  相似文献   

11.
Verslues PE  Bray EA 《Plant physiology》2004,136(1):2831-2842
With the goal of identifying molecular components of the low-water-potential response, we have carried out a two-part selection and screening strategy to identify new Arabidopsis mutants. Using a system of polyethylene glycol-infused agar plates to impose a constant low-water-potential stress, putative mutants impaired in low-water-potential induction of the tomato (Lycopersicon esculentum) le25 promoter were selected. These lines were then screened for altered accumulation of free Pro. The seedlings of 22 mutant lines had either higher or lower Pro content than wild type when exposed to low water potential. Two mutants, designated low-water-potential response1 (lwr1) and lwr2, were characterized in detail. In addition to higher Pro accumulation, lwr1 seedlings had higher total solute content, greater osmotic adjustment at low water potential, altered abscisic acid content, and increased sensitivity to applied abscisic acid with respect to Pro content. lwr1 also had altered growth and morphology. lwr2, in contrast, had lower Pro content and less osmotic adjustment leading to greater water loss at low water potential. Both lwr1 and lwr2 also had altered leaf solute content and water relations in unstressed soil-grown plants. In both mutants, the effects on solute content were too large to be explained by the changes in Pro content alone, indicating that LWR1 and LWR2 affect multiple aspects of cellular osmoregulation.  相似文献   

12.
The purpose of the study was to measure shoot and root dry matter (DM) and production of auxins, salicylic acid, abscisic acid, and jasmonic acid in sunflower (Helianthus annuus L.) seedlings cultivated under water stress and singly inoculated or co-inoculated with Achromobacter xylosoxidans (SF2) and Bacillus pumilus (SF3 and SF4) bacterial strains. Shoot DM was higher in non-stressed seedlings than in stressed seedlings for all inoculation treatments. Water stress resulted in decreased relative water content and reduction of shoot DM. Root DM was higher in stressed seedlings than in non-stressed seedlings. Salicylic acid was the most abundant phytohormone in shoots of stressed, singly inoculated and co-inoculated seedlings. High salicylic acid content in stressed seedlings suggests that this hormone plays a key role in abiotic stress. Abscisic acid was higher in stressed and co-inoculated seedlings than in non-stressed seedlings but was lower than that of salicylic acid. Auxin profile was similar to that of abscisic acid in co-inoculated seedlings. Shoot jasmonic acid content was increased in stressed seedlings co-inoculated with SF2/SF3 or SF2/SF4. Shoot hormonal profiles were different from those of root, suggesting a differential effect of bacterial inoculation on these plant organs. Our findings will be useful in future strategies to mitigate drought effects on crop plants through bacterial inoculation treatments.  相似文献   

13.
Changes on abscisic acid (ABA), jasmonic acid (JA) and indole-3-acetic acid (IAA) levels were investigated in papaya seedlings (Carica papaya L.) cv. “Baixinho de Santa Amalia” under progressive water stress and subsequent rehydration. Also, the behaviour of leaf gas exchange and leaf growth was determined under stress condition. The results indicated that ABA and JA differ in their pattern of change under water stress. ABA continuously increased in leaves and roots during the whole period of stress whereas JA showed a sharp increase and a later decrease in both organs. Re-watering reduced rapidly (24 h) leaf and root ABA to control levels whereas the influence on JA levels could not be assessed. Drought and recovery did not alter IAA levels in leaf and root tissues of papaya seedlings. In addition, water stress reduced stomatal conductance, photosynthetic rate, transpiration rate, the percentage of attached leaves and leaf growth. Rehydration reverted in few days the effects of stress on leaf growth and gas exchange parameters. Overall, the data suggest that ABA could be involved in the induction of several progressive responses such as the induction of stomatal closure and leaf abscission to reduce papaya water loss. In addition, the pattern of accumulation of JA is compatible with a triggering signal upstream ABA. The unaltered levels of IAA could suggest a certain adaptive ability of papaya to maintain active physiological processes under progressive drought stress.  相似文献   

14.
Cut seedlings of wheat plants (Triticum aestivum L. cv. Starke II Weibull) between 6 and 7 days old were water stressed in darkness by exposing them to air of 35% relative humidity 2.5 to 20 h. This treatment resulted in a water potential of -11 bars in the leaves after 20 h. The leaves were then rewatered and irradiated. The chlorophyll formation that took place in fully turgid leaves during the greening was markedly decreased in the case of the water-stress pretreatmet. and especially the lag phase was prolonged. The longer the stress pretreatment the more evident was the subsequent effect on chlorophyll formation. However, no linear relationship was found between the amount of stress and the chlorophyll content. Protochlorophyllide regeneration from endogenously formed δ-aminolevulinic acid was markedly decreased even after the shortest water-stress period. However, protochlorophyllide accumulation from exogenously supplied δ-aminolevulinic acid was only slightly decreased following the water-stress pretreatment. Further more, the ratio of protochlorophyllide650 to protochlorophyllide628 was slightly reduced by the same conditions. During the stress period both abscisic acid and proline were accumulated in the leaves. The content of abscisic acid increased up to six times the normal level during water stress lasting for 20 h. The increase of proline was about three-fold for similar treatment. After rewatering the leaves the levels of both abscisic acid and proline rapidly declined and reached. 10 h later, the levels found in unstressed seedlings. The increase in abscisic acid during water stress associated with impaired chlorophyll metabolism suggested that the after-effect of water stress might be linked to chlorophyll metabolism through abscisic acid or some of its metabolites. The changes in proline content open the possibility that this substance could function as a reserve substance for the formation of chlorophyll after the discon tinuation of the stress.  相似文献   

15.
Abscisic Acid induces anaerobiosis tolerance in corn   总被引:6,自引:3,他引:3       下载免费PDF全文
Flooding is a frequently occurring environmental stress that can severely affect plant growth. This study shows that treatment of corn (Zea mays L.) seedlings with abscisic acid (ABA) increases their tolerance to anoxia 10-fold over untreated seedlings and twofold over seedlings treated with water. Corn seedlings stressed anoxically for 1 day showed only 8% survival when planted in vermiculite. Pretreatment of root tips with 100 micromolar ABA or water for 24 hours before the 1 day anoxic stress increased the anoxic survivability of seedlings to 87% and 47%, respectively. Cycloheximide (5 milligrams per liter), added together with ABA, reduced the seedling survival rate, indicating that the induction of anoxic tolerance in corn by ABA was partly a result of the synthesis of new proteins. ABA treatment induced a threefold increase in alcohol dehydrogenase enzyme activity in corn roots. However, after 24 h of anoxia, alcohol dehydrogenase enzyme activity between the ABA-pretreated and non-pretreated corn roots was not significantly different. The results indicated that ABA played an important role in inducing anoxic tolerance in corn and that the induced tolerance was probably mediated by an increase in alcohol dehydrogenase enzyme activity before the anoxic stress.  相似文献   

16.
Coronatine (COR) is a chlorosis-inducing phytotoxin that mimics some biological activities of methyl jasmonate (MeJA). Although MeJA has been reported to alleviate drought stress, it is unclear if COR has the same ability. Our objective was to determine the influence of exogenously applied MeJA and COR on the growth and metabolism of cauliflower seedlings under drought stress and recovery. Both MeJA and COR enhanced the growth and accumulation of dry matter in cauliflower seedlings during drought-stressed and rewatering conditions. Treatment with MeJA or COR enhanced tolerance of drought stress through increased accumulation of chlorophyll and net photosynthetic rate. Enzymatic (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione reductase) and nonenzymatic antioxidant (proline and soluble sugar) systems were activated, and lipid peroxidant (malondialdehyde and hydrogen peroxide) was suppressed by MeJA and COR under drought stress. MeJA and COR also increased leaf relative water content and endogenous abscisic acid level under drought-stressed conditions. After rewatering, the contents of leaf water, chlorophyll, abscisic acid, and photosynthetic characteristics as well as enzymatic and nonenzymatic antioxidant systems showed nearly complete recovery. Both MeJA and COR can alleviate the adverse effects of drought stress and enhance the ability for water stress resistance through promotion of defense-related metabolism in cauliflower seedlings.  相似文献   

17.
Changes in abscisic acid and its metabolites were followed through two drought cycles in Pseudotsuga menziesii (Mirb.) Franco seedlings to determine the metabolic pathway of the hormone and its relationship to branch (stomatal) conductance. Three year-old, intact seedlings were water-stressed, watered, and restressed over a period of 30 days. Water potential was sampled with a pressure chamber and branch conductance with a steady-state porometer. Needle content of abscisic acid and 2- trans -abscisic acid and their saponifiable conjugates were quantified with gas-liquid chromatography. The typical water potential threshold in branch conductance, decreasing abruptly at -2.0 MPa, corresponded to an increase in abscisic acid content of 240 ng g−1. The relationship between abscisic acid and water potential was not definitive, though the general trend was an increase in the hormone with intensifying stress until water potential was -5.0 MPa, when concentration sharply declined. No adjustment to stress was observed in the relationships, but stress during the second cycle progressed more slowly. A linear relationship between abscisic acid and its conjugate indicated the importance of the interconversion of the two compounds for storage and supply of the free acid.  相似文献   

18.
Growth of carrot and radish seedlings in nutrient culture was inhibited by pretreatment with three calmodulin inhibitors. There was little selective effect on specific organs, shoots, tap root and fibrous roots over a range of concentrations. Although pretreatment with CaCl2 (0.5 mM) did not affect growth of untreated seedlings, it partially reduced the inhibitory effects of trifluoperazine over the concentration range 0.01–0.05 mM. Trifluoperazine reduced the growth of GA3-treated seedlings but did not overcome the modifying effect of GA3 in favouring shoot/root ratio; ABA exacerbated its inhibitory effect on overall seedling growth and particularly on tap root development.Abbreviations GA3 gibberellic acid - ABA abscisic acid - CaCl2 calcium chloride - GAs gibberellins - Tfp trifluoperazine  相似文献   

19.
In Mediterranean dry grasslands, water availability and grazing strongly influence plant establishment. Although higher water availability and lower grazing pressure usually increase seedling recruitment in the beginning, higher competition may reduce seedling survival. In our study, we analysed this trade-off for the dominant species of Western Mediterranean steppes Brachypodium retusum which hardly recolonises restoration sites degraded by soil disturbance such as arable use.A split-plot experiment was set up on an ex-arable site in the “La Crau” steppe in order to test the effects of initial watering and sheep grazing on seedling recruitment, survival and early growth during two years. The watering treatment was applied in the first autumn and spring doubling the usual precipitation during this period and grazing was tested using exclosures. Survival and growth of seedlings established from field-sown seeds were compared to those of transplanted seedlings pre-grown in a growth chamber.Watering did not affect germination whereas the grazing effect was negative. Initial watering had a positive effect on survival only in grazed plots suggesting a compensatory effect under grazing disturbance. Significant main effects of watering on early growth disappeared in the second season. Grazing significantly reduced most measured growth traits whereas the effect on survival was only marginally significant. Planted seedlings (49%) survived better than seedlings emerged from field-sown seeds (36%). In conclusion, initial fencing increases establishment success of B. retusum in ecological restoration. Initial watering may help to mitigate negative grazing effects when fencing is not possible.  相似文献   

20.
The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhanced growth inhibition in the presence of exogenous ABA. The tos1 tomato mutant is also hypersensitive to osmotic stress, but in contrast to tss2, shows decreased sensitivity to ABA. Surprisingly, blocking ethylene signalling suppresses the growth defect of tss2 seedlings on ABA, NaCl, and osmotic stress, but not the osmotic hypersensitivity of tos1. The ethylene production of tss2 seedlings is increased compared with that of control seedlings under osmotic stress. In addition, the tss2 plants are hypersensitive to root growth inhibition by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This suggests that, in addition to ABA regulation, TSS2 acts as a negative regulator of endogenous ethylene accumulation. As previously shown in Arabidopsis, it is shown here that extensive cross-talk occurs between the ABA and ethylene signalling pathways in tomato and that the TSS2 and TOS1 loci appear as regulators of this cross-talk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号