首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer flap movements may be asynchronous and that the flap which wraps over the P3 to P1 (P3-P1) residues of the substrate might close first. This is consistent with our hypothesis that the P3-P1 region is crucial for substrate recognition. The intermediate conformation is conserved in both the wild-type and drug-resistant variants. The structural differences between the variants are evident only when the flaps are closed. Thus, a plausible structural model for the adaptability of HIV-1 protease to recognize substrates in the presence of drug-resistant mutations has been proposed.  相似文献   

3.
4.
The protease from type 1 human immunodeficiency virus (HIV-1) is a critical drug target against which many therapeutically useful inhibitors have been developed; however, the set of viral strains in the population has been shifting to become more drug-resistant. Because indirect effects are contributing to drug resistance, an examination of the dynamic structures of a wild-type and a mutant could be insightful. Consequently, this study examined structural properties sampled during 22 nsec, all atom molecular dynamics (MD) simulations (in explicit water) of both a wild-type and the drug-resistant V82F/I84V mutant of HIV-1 protease. The V82F/I84V mutation significantly decreases the binding affinity of all HIV-1 protease inhibitors currently used clinically. Simulations have shown that the curling of the tips of the active site flaps immediately results in flap opening. In the 22-nsec MD simulations presented here, more frequent and more rapid curling of the mutant's active site flap tips was observed. The mutant protease's flaps also opened farther than the wild-type's flaps did and displayed more flexibility. This suggests that the effect of the mutations on the equilibrium between the semiopen and closed conformations could be one aspect of the mechanism of drug resistance for this mutant. In addition, correlated fluctuations in the active site and periphery were noted that point to a possible binding site for allosteric inhibitors.  相似文献   

5.
6.
7.
The Nef protein of human immunodeficiency virus type 1 (HIV-1) promotes virion infectivity through mechanisms that are yet ill defined. Some Nef is incorporated into particles, where it is cleaved by the viral protease between amino acids 57 and 58. The functional significance of this event, which liberates the C-terminal core domain of the protein from its membrane-associated N terminus, is unknown. To address this question, we examined the modalities of Nef virion association and processing. We found that although significant levels of Nef were detected in HIV-1 virions partly in a cleaved form, cell-specific variations existed in the efficiency of Nef proteolytic processing. The virion association of Nef was strongly enhanced by myristoylation but did not require other HIV-1-specific proteins, since Nef was efficiently incorporated into and cleaved inside murine leukemia virus particles. Substituting alanine for tryptophan57 decreased the efficiency of Nef processing, while mutating leucine58 had little effect. In contrast, replacing both of these residues simultaneously almost completely prevented this process. However, when the resulting mutants were compared with a wild-type control in viral infectivity assays, no correlation was found between the levels of cleavage and the ability to stimulate virion infectivity. Furthermore, simian immunodeficiency virus Nef, which lacks the sequence recognized by the protease and as a consequence is not cleaved despite its incorporation into virions, could stimulate the infectivity of a nef-defective HIV-1 variant as efficiently as HIV-1 Nef. On these bases, we conclude that the proteolytic processing of Nef is not required for the ability of this protein to enhance virion infectivity.  相似文献   

8.
W K Wang  M Essex    T H Lee 《Journal of virology》1995,69(1):538-542
Between hypervariable regions V1 and V2 of human immunodeficiency virus type 1 (HIV-1) gp120 lies a cluster of relatively conserved residues. The contribution of nine charged residues in this region to virus infectivity was evaluated by single-amino-acid substitutions in an infectious provirus clone. Three of the HIV-1 mutants studied had slower growth kinetics than the wild-type virus. The delay was most pronounced in a mutant with an alanine substituted for an aspartic acid residue at position 180. This aspartic acid is conserved by all HIV-1 isolates with known nucleotide sequences. Substitutions with three other residues at this position, including a negatively charged glutamic acid, all affected virus infectivity. The defect identified in these mutants suggests that this aspartic acid residue is involved in the early stages of HIV-1 replication.  相似文献   

9.
We investigated the infectivities and replicative capacities of a large panel of variants of the molecular human immunodeficiency virus type 1 (HIV-1) NL4-3 clone that differ exclusively in the V3 region of the viral envelope glycoprotein and the nef gene. Our results demonstrate that Nef enhances virion infectivity and HIV-1 replication independently of the viral coreceptor tropism.  相似文献   

10.
11.
12.
Drug resistant mutations have severely restricted the success of HIV therapy. These mutations frequently involve the aspartic protease encoded by the virus. Knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more effective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site, which are able to produce significant resistance against the anti-HIV drug TMC-114. We provide insight into the molecular basis of TMC-114 resistance major flap mutations (I50V and I54M) in HIV-1 protease. It reports the shape complementarity and receptor-ligand interaction analysis supported by unrestrained all-atom molecular dynamics simulations of wild and major flap mutants of HIV-1 protease that sample large conformational changes of the flaps and active site binding residues. Both resistant flap mutants showed less atomic interaction toward TMC-114 and more structural deviation compared to wild HIV-protease. It is due to increasing flexibility at TMC-114 binding cavity and deviation of binding residues in 3-D space. Distortion in binding cavity and deviation in binding residues are the result of alteration in hydrogen bonding. Flap region also exhibited similar behaviour due to changes in number of hydrogen bonds during simulations.  相似文献   

13.
The fourth conserved region (C4) of human immunodeficiency virus type 1 (HIV-1) surface glycoprotein has been shown to participate in CD4 binding and to influence viral tropism (A. Cordonnier, L. Montagnier, and M. Emerman, Nature [London] 340:571-574, 1989). To define the role of the corresponding region of HIV-2, we introduce single amino acid changes into the C4 sequence of HIV-2ROD. The effects of these mutations on glycoprotein function and on virus infectivity have been examined. We have shown that the tryptophan residue at position 428 is necessary primarily for CD4 binding. The isoleucine residue at position 421 is necessary for the establishment of productive infection in the promonocytic cell line U937, while it is dispensable to some extent for infection of primary T lymphocytes or the lymphocytic cell line SUP-T1. This replication defect correlated with the failure of the Ile-421-to-Thr (Ile-421-->Thr) mutant glycoprotein to form syncytia in U937 cells. DNA analysis of revertant viruses revealed that a strong selective pressure was exerted on residue 421 of the surface glycoprotein to allow HIV-2 infection of U937 cells. These results demonstrate that this region of HIV-2 plays an important role in determining fusion efficiency in a cell-dependent manner and consequently can influence viral tropism.  相似文献   

14.
Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine (AP2V). To provide a structural rationale for HIV-1 protease binding to the NC-p1 cleavage site, we solved the crystal structures of inactive (D25N) WT and V82A HIV-1 proteases in complex with their respective WT and AP2V mutant NC-p1 substrates. Overall, the WT NC-p1 peptide binds HIV-1 protease less optimally than the AP2V mutant, as indicated by the presence of fewer hydrogen bonds and fewer van der Waals contacts. AlaP2 does not fill the P2 pocket completely; PheP1' makes van der Waals interactions with Val82 that are lost with the V82A protease mutation. This loss is compensated by the AP2V mutation, which reorients the peptide to a conformation more similar to that observed in other substrate-protease complexes. Thus, the mutant substrate not only binds the mutant protease more optimally but also reveals the interdependency between the P1' and P2 substrate sites. This structural interdependency results from coevolution of the substrate with the viral protease.  相似文献   

15.
The incorporation of viral envelope (Env) glycoproteins into nascent particles is an essential step in the production of infectious human immunodeficiency virus type 1 (HIV-1). This process has been shown to require interactions between Env and the matrix (MA) domain of the Gag polyprotein. Previous studies indicate that several residues in the N-terminal region of MA are required for Env incorporation. However, the precise mechanism by which Env proteins are acquired during virus assembly has yet to be fully defined. Here, we examine whether a highly conserved glutamate at position 99 in the C-terminal helix is required for MA function and HIV-1 replication. We analyze a panel of mutant viruses that contain different amino acid substitutions at this position using viral infectivity studies, virus-cell fusion assays, and immunoblotting. We find that E99V mutant viruses are defective for fusion with cell membranes and thus are noninfectious. We show that E99V mutant particles of HIV-1 strains LAI and NL4.3 lack wild-type levels of Env proteins. We identify a compensatory substitution in MA residue 84 and show that it can reverse the E99V-associated defects. Taken together, these results indicate that the C-terminal hydrophobic pocket of MA, which encompasses both residues 84 and 99, has a previously unsuspected and key role in HIV-1 Env incorporation.  相似文献   

16.
A prominent characteristic of human immunodeficiency virus type 1 (HIV-1) is its high genetic variability, which generates diversity of the virus and often causes a serious problem of the emergence of drug-resistant mutants. Subtype B HIV-1 is dominant in advanced countries, and the mortality rate due to subtype B HIV-1 has been decreased during the past decade. In contrast, the number of patients with non-subtype B viruses is still increasing in developing countries. One of the reasons for the prevalence of non-subtype B viruses is lack of information about the biological and therapeutic differences between subtype B and non-subtype B viruses. M36I is the most frequently observed polymorphism in non-subtype B HIV-1 proteases. However, since the 36th residue is located at a non-active site of the protease and has no direct interaction with any ligands, the structural role of M36I remains unclear. Here, we performed molecular dynamics (MD) simulations of M36I protease in complex with nelfinavir and revealed the influence of the M36I mutation. The results show that M36I regulates the size of the binding cavity of the protease. The reason for the rare emergence of D30N variants in non-subtype B HIV-1 proteases was also clarified from our computational analysis.  相似文献   

17.
Indinavir (IDV) (also called CRIXIVAN, MK-639, or L-735,524) is a potent and selective inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease. During early clinical trials, in which patients initiated therapy with suboptimal dosages of IDV, we monitored the emergence of viral resistance to the inhibitor by genotypic and phenotypic characterization of primary HIV-1 isolates. Development of resistance coincided with variable patterns of multiple substitutions among at least 11 protease amino acid residues. No single substitution was present in all resistant isolates, indicating that resistance evolves through multiple genetic pathways. Despite this complexity, all of 29 resistant isolates tested exhibited alteration of residues M-46 (to I or L) and/or V-82 (to A, F, or T), suggesting that screening of these residues may be useful in predicting the emergence of resistance. We also extended our previous finding that IDV-resistant viral variants exhibit various patterns of cross-resistance to a diverse panel of HIV-1 protease inhibitors. Finally, we noted an association between the number of protease amino acid substitutions and the observed level of IDV resistance. No single substitution or pair of substitutions tested gave rise to measurable viral resistance to IDV. The evolution of this resistance was found to be cumulative, indicating the need for ongoing viral replication in this process. These observations strongly suggest that therapy should be initiated with the most efficacious regimen available, both to suppress viral spread and to inhibit the replication that is required for the evolution of resistance.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) fusion inhibitors blocking viral entry by binding the gp41 heptad repeat 1 (HR1) region offer great promise for antiretroviral therapy, and the first of these inhibitors, T20 (Fuzeon; enfuvirtide), is successfully used in the clinic. It has been reported previously that changes in the 3-amino-acid GIV motif at positions 36 to 38 of gp41 HR1 mediate resistance to T20 but usually not to second-version fusion inhibitors, such as T1249, which target an overlapping but distinct region in HR1 including a conserved hydrophobic pocket (HP). Based on the common lack of cross-resistance and the difficulty of selecting T1249-resistant HIV-1 variants, it has been suggested that the determinants of resistance to first- and second-version fusion inhibitors may be different. To further assess HIV-1 resistance to fusion inhibitors and to analyze where changes in HR1 are tolerated, we randomized 16 codons in the HR1 region, including those making contact with HR2 codons and/or encoding residues in the GIV motif and the HP. We found that changes only at positions 37I, 38V, and 40Q near the N terminus of HR1 were tolerated. The propagation of randomly gp41-mutated HIV-1 variants in the presence of T1249 allowed the effective selection of highly resistant forms, all containing changes in the IV residues. Overall, the extent of T1249 resistance was inversely correlated to viral fitness and cytopathicity. Notably, one HIV-1 mutant showing approximately 10-fold-reduced susceptibility to T1249 inhibition replicated with wild type-like kinetics and caused substantial CD4+-T-cell depletion in ex vivo-infected human lymphoid tissue in the presence and absence of an inhibitor. Taken together, our results show that the GIV motif also plays a key role in resistance to second-version fusion inhibitors and suggest that some resistant HIV-1 variants may be pathogenic in vivo.  相似文献   

19.
Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312–315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号