首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The present study provides a thorough analysis of the composition of recent marine ostracod populations from the bottom sediments of the central Aegean Sea, as well as their distribution patterns. In particular, a detailed qualitative and quantitative study of living ostracod assemblages was carried out in the marine environments of SE Andros Island. Sampling took place at Kastro and Korthi Gulf, both located at the southeastern coast of the Andros Island and from depth of 1.5 to 18 m, while additional samples were collected outside the gulfs at a depth of 120–180 m. Only ostracods considered to have been living at the time of collection were picked from the samples. A total of 51 species belonging to 34 genera were identified and four main ostracod assemblages, representing different biotopes, were distinguished. The results produced from the application of Q‐mode cluster analysis in the data set, the calculated assemblage structure indices for each sample, as well as the bathymetric and granulometric data are as follows: Hiltermannicythere rubra assemblage (occurs in substrates of sandy mud and at a water depth ranging from 40–60 m to the depth of 100 m or even more), Loxoconcha affinis, Xestoleberis sexmaculata assemblage (occurs in substrates of muddy very fine to fine sands and shallower environments), Semicytherura incogruens assemblage (occurs in very fine sands at a water depth from 10 to 28 m), Loculicytheretta pavonia and Neocytherideis fasciata, Pontocythere turbita assemblages (occurs mainly in fine sands and at a water depth between 3.5 and 15 m) and Urocythereis neapolitana assemblage (occurs in substrates of medium to coarse sand and at a water depth of less than 20 m). (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Marine Micropaleontology》2007,63(4):211-234
Two detailed records (NSF and 05NSC, Sidi Nasseur, Tunisia) across the Danian/Selandian (D/S) boundary were investigated for their micropaleontological content. Calcareous nannofossils and planktic foraminifera provided a biostratigraphic framework. The interval spans part of planktic foraminiferal Zone P2, Subzone P3a and part of Subzone P3b. This corresponds to calcareous nannoplankton Zone NP4. Using a more detailed nannofossil zonation the studied section spans part of Zone NTp6, Zone NTp7a and part of NTp7b. Quantitative ostracod and qualitative benthic foraminiferal data were used to characterize environmental changes across the D/S boundary. The two subsections have yielded a total of 50 ostracod taxa. The ostracod assemblage of the entire section belongs to the Southern Tethyan Type showing subtle but distinct changes up section. Based on statistical analysis of the quantitative ostracod data, faunal changes at a glauconitic maker bed (P3a/P3b boundary) were demonstrated. The local Reticulina proteros assemblage, with the typical species R. proteros, Oertliella vesiculosa and Cytheroptheron lekefense, is gradually replaced by the Protobuntonia nakkadii assemblage, with the typical species Cristaeleberis arabii, Xestoleberis tunisiensis, Cytheropteron sp. and P. nakkadii, across the glauconitic bed. The benthic foraminifera also demonstrated distinct changes at this marker bed. The changes in ostracods and foraminifera are related to changes in paleoproductivity and an overall relative sea-level fall.The lithological and faunal changes at the P3a/P3b zone boundary within the Sidi Nasseur sections seem to correspond to the D/S boundary in the type region in Danmark and are characterized by a significant hiatus, yielding this section not suitable as a GSSP candidate for this boundary.  相似文献   

3.
Saronikos Gulf, including the industrial zone of Elefsis Bay and the Port of Piraeus, is one of the most anthropogenically impacted coastal regions of Greece. Distinct assemblages of benthic foraminifers in sediment samples, collected from this gulf in February 2012, defined three zones that reflect abiotic parameters of the sediments (e.g., organic carbon, metal content). A low-diversity assemblage, dominated by stress-tolerant Ammonia tepida and Bulimina spp., was characteristic of samples from Elefsis Bay. Samples from the western and central part of Saronikos Gulf were the most variable with respect to both abiotic parameters and the foraminiferal assemblage, characterized by a mix of stress-tolerant and more sensitive taxa, especially Bolivina spp. and Nonion fabum. Samples from the coast of Salamis and at the eastern sector of the gulf were characterized by a diverse assemblage that included Peneroplis pertusus, miliolids, and a variety of small, epiphytic rotaliid taxa. A new biotic index, the Foram Stress Index (FSI), is based on the relative percentages of two ecological groups of benthic foraminiferal species, grouped according to their tolerance/sensitivity to organic matter enrichment and weighted proportionately to obtain a formula to define five ecological-status classes. The FSI produced three rankings for these samples (Poor, Moderate and Good), that strongly correlate with the macroinvertebrate-classification tool known as the BENTIX Index. The FSI provides a new tool to assess sediment or substrata quality based upon the benthic foraminiferal assemblages, which are a significant component of living meiobenthic communities that are generally not considered in most biotic benthic indices.  相似文献   

4.
Variations in oceanic primary productivity, flux of organic carbon to the sediments, and dissolved-oxygen levels in the water column are thought to be important in the control of benthic foraminiferal test size, wall thickness, morphology, and species composition of assemblages by many foraminiferal paleontologists. Aspects of these processes should be reflected by the benthic foraminiferal oxygen index (BFOI) based on these foraminiferal characteristics. However, analyses indicate that the BFOI correlates most strongly with dissolved-oxygen levels in overlying water (R2=0.81), weakly with oceanic primary productivity (R2=0.55), and weakly with organic carbon flux to the sediments (R2=0.51). Although both dissolved oxygen and organic carbon flux are main controlling factors for benthic foraminiferal assemblages, the BFOI is a useful indicator extracted from benthic foraminiferal assemblages for estimating the condition of dissolved oxygen in Cretaceous and Cenozoic oceans.  相似文献   

5.
Environmental conditions and productivity changes in the southeastern Okhotsk Sea have been reconstructed for the last 20 ka using planktonic and benthic foraminiferal oxygen isotope records and calcium carbonate, organic carbon and opal content data from two sediment cores. Species variability in benthic foraminiferal and diatom assemblages provides additional palaeoceanographic evidence. AMS radiocarbon dating of the sediments and oxygen isotope stratigraphy serve as the basis for the age models of the cores for the last 20 14C kyr and for correlation between environmental variations in the Okhotsk Sea, and regional and global climate changes. Benthic foraminiferal assemblages in the two cores (depth 1590 and 1175 m) varied with time, so that we could recognise seven zones with different species composition. Changes in the benthic foraminiferal assemblages parallel major environmental and productivity variations. During the last glaciation, fluxes of organic matter to the sea floor showed strong seasonal variations, indicated by the presence of abundant A. weddellensis and infaunal Uvigerina spp. Benthic foraminiferal assemblages changed with warming at 12.5–11 and 10–8 14C kyr BP, when productivity blooms and high organic fluxes were coeval with global meltwater pulses 1A and 1B. Younger Dryas cooling caused a decline in productivity (11–10 kyr BP) affecting the benthic faunal community. Subsequent warming triggered intensive diatom production, opal accumulation and a strong oxygen deficiency, causing significant changes in benthic fauna assemblages from 5.26–4.4 kyr BP to present time.  相似文献   

6.
Recent benthic foraminiferal assemblages in surface sediments of the Rockall Trough (NE Atlantic) have been qualitatively and quantitatively studied in order to investigate the effects of hydrocarbon seepage on benthic foraminiferal populations. Species diversity and abundance data have been examined in samples of similar lithology collected from hydrocarbon seep and non-seep (control) areas at a water depth of about 1000 m. Three species groups with different environmental preferences can be recognized. Group 1 dominates seep samples, and includes species tolerant to hydrocarbon emission, especially Angulogerina bradyana. In contrast, the less tolerant Group 2 species are weakly represented at seeps but dominate control samples. Group 3 species occur in low frequencies in both seep and non-seep samples. Furthermore, the measurement of species diversity (Shannon-Wiener and Simpson indices) demonstrates a difference in foraminiferal occurrence and frequencies between the seep and non-seep sites. Thus, the benthic foraminiferal distribution pattern is guided by different sensitivities of the species to hydrocarbons, reduced bottom-water oxygen usually associated with seepage and/or to a relatively elevated organic matter content in the sediment.  相似文献   

7.
We identified 164 taxa of benthic foraminifera in 35 selected box-core top samples collected on the Australian-Irian Jaya continental margin in waterdepths between 60 and 2119 m, along three systematically sampled transects across the Banda Arc. The bathymetric distribution pattern of the benthic foraminiferal faunas is related to the oceanographic situation of this area, where the watermasses of the Indian Ocean collide with the watermasses of the Pacific Ocean. With the results of cluster analyses and empirical depth-ranges of “isobathyal” taxa, four faunal depth-zones and four subzones can be distinguished:
  • 1.(A) The Outer Shelf Biofacies (60–150 m), corresponding to the photic oxycline-zone of the Indonesian Surface Waters, and inhabited by a benthic foraminiferal association dominated by Amphistegina lessonii, Operculina ammonoides, Heterolepa dutemplei and various miliolids.
  • 2.(B) The Upper Bathyal Biofacies (150–400 m), reflecting the aphotic, deeper Indonesian Surface Waters, dominated by Bolivina robusta, Heterolepa mediocris, Hanzawaia nipponica and Lenticulina spp. A major faunal break is situated at the lower boundary of this depth-zone.
  • 3.(C) The Middle Bathyal Biofacies (400–1500 m), representing the Indonesian Intermediate Waters with minimum oxygen-contents, dominated by Bolivina robusta, Cassidulina carinata, Gavelinopsis lobatulus and Sphaeroidina bulloides. In this depth-zone many taxa occur with only limited depth-ranges, on which four subzones (C1–4) could be identified, allowing for a local (paleo)bathymetric resolution of a few hundred meters.
  • 4.(D) The Lower Bathyal Biofacies (1500–2120 m) corresponds with the Indonesian Deep Waters. It is dominated by Pullenia bulloides and other cosmopolitan deep water indicators, such as Epistominella exigua, Laticarinina pauperata, Oridorsalis umbonatus and Planulina wuellerstorfi.
The sample fraction > 250 μm can be used to readily delineate the major faunal trends. Paleobathymetric resolution improves when the sample portion > 125 μm is used.  相似文献   

8.
Borelis melo andDendritina sp. occur in Messinian carbonates of the Cabo de Gata near Almeria. This is the first record of these larger benthic foraminifera from Messinian deposits in SE Spain. Two foraminiferal assemblages are differentiated: firstly, aBorelis- Dendritina assemblage which occurs on reef flanks, and secondly a lagoonal monospecificDendritina fauna.  相似文献   

9.
The raised coral reef sequences at Kish Island provide a rare window into the depositional setting and paleoenvironment of a high-latitude, shallow-water coral reef that developed under turbid conditions in the Persian Gulf during Marine Isotope Stage 7 (~200 to 250?ka). Six sedimentary facies and eight foraminiferal assemblages can be identified throughout the sequence. A ninth assemblage can be defined for the modern subtidal realm. At the base of the sequence is a marl rich in hyaline foraminifera (Elphidium, Ammonia, Asterorotalia, Bulimina, Nonion, and Quinqueloculina) and ostracods, which was deposited in about 30–40?m water depth in a turbid deltaic setting. Shallowing resulted in the marl becoming sandy, and changing to a mollusc-rich facies with rare foraminifera (mostly smaller miliolid taxa) that formed the substrate for coral recruitment. The coral marl layer contains many large corals embedded in situ in an aggregate and coralline algae-rich marl. Two abundance peaks in the foraminifera occur at the base and mid-way through this layer, which also correspond to a change from Murrayinella-dominated to Placopsilina-dominated assemblages, indicating deepening and more open-marine conditions, but elevated turbidity. Towards the top of the layer, abundance of foraminifera decreases and miliolid foraminifera become dominant. The top-most layer is dominated by coral and mollusc fragments and has an Amphistegina-rich reef-related assemblage. Of the Late Pleistocene foraminiferal assemblages, the Murrayinella-, Pararotalia-, and Placopsilina-dominated assemblages are no longer present in the modern gulf for unknown reasons. Of the other five assemblages, only the Amphistegina assemblage is found within proximity to the modern Kish Island. The Elphidium and Asterorotalia-Bulimina assemblages are from deeper areas of the gulf. The Ammonia and Quinqueloculina assemblages occur in lagoonal sediments on the Arabian side of the gulf. Like the modern Persian Gulf, the diversity of foraminifera was low (~80 common species) during the Pleistocene and does not correlate with foraminiferal abundance.  相似文献   

10.
A study of sea level fluctuation records based on foraminiferal assemblages was carried out for the first time in a sediment core taken at the Lac Retba edge. A total of 37 foraminifera species were collected along the core, among which most are known in the modern estuaries and lagoons of Senegal. A succession of four assemblages dominated by Ammonia parkinsoniana and A. tepida were identified; they correspond to different stages of evolution of the lake. The first association, at the base of the core, indicates a lagoon slightly opened to the sea and bordered with vegetation, under relatively humid climate. The second has the richest and most diversified microfauna with a high proportion of coastal, marine benthic and planktonic species (about 10%) that indicate a small coastal gulf bordered with mangroves. The third association is oligospecific and typical of a closed and hypersaline lagoon under a dry climate. The last association again contains coastal, marine benthic and scarce planktonic species (3%) indicating a change to a saltier and more open lagoon under dry climate. The disappearance of planktonic foraminifera at the top of the core indicates the closure of the lagoon. The biocenotic indicators are evidence for two marine intrusions that are referred to the Dakarian (3000 years B.P.) and Saint-Louisian (2140-680 years B.P.) stages of the Upper Holocene of the senegalo-mauritanian stratigraphic scale. Evidence of the Lac Retba closure since 680 years B. P. appears in the core by high reduction of foraminifers’ abundance and diversity absence of planktonic species, and salts precipitated at the bottom of the lake.  相似文献   

11.
The paleoecological interpretation of fossil foraminiferal assemblages depends on an understanding of the ecological processes operating at the present. This study investigates both the quality of organic matter (OM) by elemental analysis as well as the sediment grain size and clay mineralogy to understand their relative influence on distribution and abundance of benthic foraminifera. This study is carried out on 15 samples regularly spaced from the mudflat to the tidal marsh. The results indicate that grain size is the most limiting parameter. Living (stained) benthic foraminiferal density and species richness are both very low within coarser sediments. OM is the second limiting factor. The density of foraminifera is the lowest and the species richness is the highest with the lowest organic carbon (Corg) contents and C/N < 12. Conversely, when the Corg is very high and C/N > 12, the density is high and the species richness medium. A high smectite proportion within the clay-size fraction seems to favor the development of Miliammina fusca. Trochammina inflata and Jadammina macrescens are both favored by an increase of organic carbon proportion but Trochammina inflata preferentially feeds on algal-derived OM when compared with Jadammina macrescens.  相似文献   

12.
This paper documents changes in benthic foraminiferal assemblages compared with high resolution ammonite biozonation along the lower Toarcian to upper Toarcian marine succession of Southern Beaujolais in southeastern France. Eight ammonite and three benthic foraminiferal zones including five subzones are distinguished based on the occurrence of twelve foraminiferal events. Each benthic foraminiferal subzone is characterized by its taxonomic and morphogroup composition, which represents the paleoecological response of these taxa and morphotypes of benthic foraminifera in the Early Jurassic and early Middle Jurassic. Major changes in abundance and diversity occur at the end of the Toarcian Oceanic Anoxic Event (T-OAE) and near the Early-Middle Jurassic transition. The low-abundance foraminiferal assemblages recorded in the Serpentinus ammonite Zone are interpreted as reflecting adverse environmental conditions after the T-OAE. The later recovery and development of the foraminiferal assemblages is documented in the Bifrons up to the Aalensis zones and is attributed to improved bottom water oxygenation. Common occurrences of agglutinated foraminifera represented mostly by Trochammina pulchra Ziegler in the Dispensum Zone point to an influx of cooler water masses during the late Toarcian. The morphogroup analysis carried out on the foraminifera and their paleoecological interpretations shed light on the changes in the stratigraphic record at the end of the T-OAE up to the Toarcian/Aalenian boundary.  相似文献   

13.
《Marine Micropaleontology》1997,29(2):105-127
The development of benthic foraminiferal assemblages from the Paleocene outcrops of the El Haria Formation near El Kef, Tunisia is discussed qualitatively and quantitatively. The aim of the study is to reconstruct the paleoenvironmental evolution between the K/Pg boundary interval and the late Paleocene event, and to compare this evolution with results from other sites along the southern Tethyan margin. Eighty-four samples, covering virtually the entire Paleocene, provide a dataset that allows detailed qualitative and multivariate analysis. The benthic foraminiferal faunas indicate a complex pattern of environmental changes during the Paleocene, marked by the succession of different benthic associations. Following the K/Pg boundary event, community restoration was characterized by the gradual build-up of faunal diversity. Decreasing dominance and the entry of taxa common to normal marine, outer neritic to upper bathyal environments indicate the completion of the ecosystem restoration in Zone Plb. A highly diverse benthic foraminiferal assemblage persisted throughout the remainder of the early Paleocene into the earliest late Paleocene. At the P3a-P3b zonal transition relative sea-level lowering is evidenced by the sudden disappearance or decreasing abundance of deeper-water taxa (e.g. Anomalinoides affinis, A. susanaensis, Gavelinella beccariiformis). Neritic deposition continued into Zone P4, when trophic levels at the seafloor increased as indicated by the entry and increasing dominance of species such as Anomalinoides cf. aegyptiacus, Bulimina midwayensis, and B. strobila, which we consider to be sensitive to eutrophication. The combined effect of shallowing and the subsequent eutrophication led to the establishment of assemblages similar to late Paleocene benthic foraminiferal assemblages from Egyptian sections, some of which record the latest Paleocene extinction event. These assemblages were interpreted to be indicative of a middle neritic, highly eutrophic environment. Enhanced vertical fluxes of organic matter along the southern Tethyan margin may have resulted from intensified upwelling. This eventually led to oxygen deficiency at the seafloor. It appears that oxygen-deficient, high-productivity shelves were a common feature of the southern Tethyan margin during the latest Paleocene.  相似文献   

14.
Shells of calcifying foraminifera play a major role in marine biogeochemical cycles; fossil shells form important archives for paleoenvironment reconstruction. Despite their importance in many Earth science disciplines, there is still little consensus on foraminiferal shell mineralization. Geochemical, biochemical, and physiological studies showed that foraminiferal shell formation might take place through various and diverse mineralization mechanisms.In this study, we contribute to benthic foraminiferal shell calcification through deciphering crystallite organization within the shells. We base our conclusions on results gained from electron backscattered diffraction (EBSD) measurements and describe microstructure/texture characteristics within the laminated shell walls of the benthic, symbiontic foraminifera: Ammonia tepida, Amphistegina lobifera, Amphistegina lessonii. We highlight crystallite assembly patterns obtained on differently oriented cuts and discuss crystallite sizes, morphologies, interlinkages, orientations, and co-orientation strengths.We show that: (i) crystals within benthic foraminiferal shells are mesocrystals, (ii) have dendritic-fractal morphologies and (iii) interdigitate strongly. Based on crystal size, we (iv) differentiate between the two layers that comprise the shells and demonstrate that (v) crystals in the septa have different assemblies relative to those in the shell walls. We highlight that (vi) at junctions of different shell elements the axis of crystal orientation jumps abruptly such that their assembly in EBSD maps has a bimodal distribution. We prove (vii) extensive twin-formation within foraminiferal calcite; we demonstrate (viii) the presence of two twin modes: 60°/[0 0 1] and 77°/~[6 –6 1] and visualize their distributions within the shells.In a broader perspective, we draw conclusions on processes that lead to the observed microstructure/texture patterns.  相似文献   

15.
Summary Smaller benthic and planktonic foraminifera from the clastic sediments of the Pazin Basin (Istria, Croatia) were studied in order to obtain more data about paleoceanographic conditions that existed in the Middle Eocene Dinaric foreland basin. The succession investigated corresponds to the Middle Eocene planktonic foraminiferal zones Globigerapsis kugleri/Morozovella aragonensis (P11), Morozovella lehneri (P12), and Globigerapsis beckmanni (P13). Benthic foraminiferal assemblages from the clastic succession are dominated by epifaunal trochospiral genera suggesting oligotrophic to mesotrophic conditions and moderately oxygenated bottom waters. Planktonic foraminiferal assemblages indicate mesotrophic to eutrophic conditions of the surface waters, with increased eutrophication in the upper part of the section. Water depth, based on the ratio between planktonic and epifaunal benthic foraminifera and on the recognized species of cosmopolitan benthic foraminifera, was estimated to have been between about 900 and 1200 m. The basin was elongated and open to marine currents on both sides allowing good circulation and ventilation of the bottom water.  相似文献   

16.
The ostracod fauna collected from the Cherahil formation that crops out at the Jebel Serj section (central Tunisia) contains 24 species belonging to 12 genera. These ostracods are associated with 9 genera of benthic Foraminifera (including 4 Nummulites species) and 7 genera of planktonic Foraminifera. The biostratigraphic study of ostracod assemblages results to the recognition of 6 biozones which are correlated with Lutetian-Priabonian. The Shannon Weaver, Margalef and equitability indices point to internal platform netritic conditions, with minor fluctuations in depth and oxygenation. The palaeobiogeographic distribution of ostracod species found in the study area of Central of Tunisia establishes a good connexion with the basins developed in Northern Africa (Tunisia, Algeria, Libya and Mauritania) and the Middle East (Egypt and Jordan).  相似文献   

17.
Surface sediment samples taken by box corer from 32 stations on the Iceland-Scotland Ridge have been investigated for their benthic foraminiferal content. The live (Rose Bengal stained) benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Principal component analysis of both the live and dead faunal data from the Iceland-Scotland Ridge reveals eight live species assemblages and six corresponding dead assemblages. Bottom water current conditions, surface sediment characteristics, particulate organic matter supply, and to some extent also the bottom water temperatures are the main factors limiting and governing the composition and distribution of live benthic foraminiferal species assemblages on the Iceland-Scotland Ridge. On the Atlantic slope of the Iceland-Scotland Ridge the dead species assemblages differ greatly from the foraminiferal fauna living there today due to winnowing processes and redeposition of Pleistocene sediments. In this area an investigation of distribution patterns of the empty tests only would lead to wrong results concerning ecologic interrelations between benthic foraminiferal species assemblages and their environment.  相似文献   

18.
Although the debate about coral reef decline focuses on global disturbances (e.g., increasing temperatures and acidification), local stressors (nutrient runoff and overfishing) continue to affect reef health and resilience. The effectiveness of foraminiferal and hard-coral assemblages as indicators of changes in water quality was assessed on 27 inshore reefs along the Great Barrier Reef. Environmental variables (i.e., several water quality and sediment parameters) and the composition of both benthic foraminiferal and hard-coral assemblages differed significantly between four regions (Whitsunday, Burdekin, Fitzroy, and the Wet Tropics). Grain size and organic carbon and nitrogen content of sediments, and a composite water column parameter (based on turbidity and concentrations of particulate matter) explained a significant amount of variation in the data (tested by redundancy analyses) in both assemblages. Heterotrophic species of foraminifera were dominant in sediments with high organic content and in localities with low light availability, whereas symbiont-bearing mixotrophic species were dominant elsewhere. A similar suite of parameters explained 89% of the variation in the FORAM index (a Caribbean coral reef health indicator) and 61% in foraminiferal species richness. Coral richness was not related to environmental setting. Coral assemblages varied in response to environmental variables, but were strongly shaped by acute disturbances (e.g., cyclones, Acanthaster planci outbreaks, and bleaching), thus different coral assemblages may be found at sites with the same environmental conditions. Disturbances also affect foraminiferal assemblages, but they appeared to recover more rapidly than corals. Foraminiferal assemblages are effective bioindicators of turbidity/light regimes and organic enrichment of sediments on coral reefs.  相似文献   

19.
Surface sediment samples taken by ? corer from 45 stations on the Norwegian continental margin and in the Norway Basin have been investigated for their benthic foraminiferal content. Unlike previous studies, the living benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Factor analysis of both the living and dead faunal data reveals six living species assemblages and five corresponding dead assemblages. The additional living assemblage is characterized by the arenaceous speciesCribrostomoides subglobosum that dominates between 1400 and 2000 m water depth, but is rare in the dead faunal data.Trifarina angulosa and, to a lesser extent,Cibicides lobatulus characterize the shallowest foraminiferal assemblage from 200 to 600 m water depth, where it is associated with strong bottom currents and warm, saline Atlantic water of the North Atlantic Drift. On the slope between 600 and 1200 m water depth, theMelonis zaandami Species Assemblage dominates, particularly in areas characterized today by rapid sedimentation of terrigeneous material. Between 1000 and 1400 m depth, where the slope is covered by fine grained, organic-rich, terrigeneous mud, the living foraminiferal assemblage is characterized byCassidulina teretis andPullenia bulloides. Below 1400 m, three foraminiferal assemblages are found:C. subglobosum is found from 1400 to 2000 m,Cibicidoides wuellerstorfi andEpistominella exigua predominantly live from 2000 to 3000 m water depth, and below 3000 m,Oridorsalis umbonatus andTriloculina frigida dominate the fauna.All of theElphidium excavatum tests found in this study and theCassidulina reniforme tests found above 500 m water depth were found to be reworked.Analysis of the sediment grain-size distribution and the organic carbon content in surface samples from the deepest stations suggest that the abundance ofC. wuellerstorfi andE. exigua is positively correlated to relatively coarse (caused by planktic foraminifera) and organic-rich sediments, whereas high frequencies ofO. umbonatus andT. frigida coincide with low organic carbon content. We suggest thatC. wuellerstorfi is adapted to deep-sea environments with relatively high food supply, tolerating relatively low interstitial water oxygen content, whereasO. umbonatus may tolerate lower food supply prefering well-oxygenated interstitial waters.  相似文献   

20.
In this study, we investigated the relationship between environmental parameters (water and sediment) and benthic foraminiferal assemblages found in nearshore siliciclastic sediment in the Arabian Gulf. Nearshore marine water and sediment samples were collected from a beach on the Gulf of Bahrain located south of Al Khobar, Saudi Arabia. The water samples were analyzed for biochemical oxygen demand (BOD5) and other chemical analyses. The sediment samples were tested for sediment oxygen demand (SOD) and heavy metal analysis. Results showed the BOD5 levels were below the detection limit (<1 ppm), while the mean SOD value was 0.97 ± 0.08 g/m2·day. The water and sediments were unpolluted and free of eutrophic enrichment, while the sediment was anoxic. The two most common genera in the benthic foraminiferal assemblage, Ammonia and Elphidium, are typical of shallow water sandy substrates. This is the first reported comparison between SOD and benthic foraminiferal assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号