首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 547 毫秒
1.
印度洋南赤道流区水体叶绿素a的分布及粒级结构   总被引:2,自引:0,他引:2  
根据2010年4—5月印度洋南赤道流区的综合环境调查资料,对印度洋南赤道流区叶绿素a浓度分布和浮游植物的粒级结构等进行了分析. 结果表明,调查海区水体层化明显,表层水温较高,营养盐浓度较低。调查海区东部测站的数据显示该区域可能受到来自印度尼西亚贯穿流和南爪哇流的影响,有高温低盐的特点。叶绿素a浓度在该海区的分布具有以下特点:(1)表层叶绿素a浓度在整个调查海区虽然普遍较低(平均为(0.1220.052) mg/m3),但具有明显的空间区域化特征:印度洋南赤道流区中部,叶绿素a浓度较低,站位间分布均匀;东部叶绿素a浓度相对较高,不同测站叶绿素a浓度差异明显.(2)整个调查区域叶绿素a浓度垂直分布具有明显的单峰结构,其最大值分布在60—80m水层,位于营养盐跃层内.(3)叶绿素a的粒级结构分析结果显示,pico级份的浮游植物对叶绿素a的贡献占主导地位,平均为75%,nano级份的贡献平均为20%,net级份对叶绿素a的贡献最小,平均仅有5%. 对比本次调查和在其它海区的研究,表明印度洋南赤道流区属于典型的低纬度寡营养海区,低的营养盐浓度(特别是NO3-浓度)是该海区浮游植物生长的主要限制因素之一.  相似文献   

2.
獐子岛及邻近海域秋季浮游植物的粒级结构及其影响因素   总被引:2,自引:0,他引:2  
吴文广  张继红  刘毅  王巍  蔺凡 《生态学报》2018,38(4):1418-1426
于2015年10月对獐子岛及邻近海域进行了航次调查,研究了獐子岛及邻近海域浮游植物粒级结构的空间分布特征及其环境影响因素。结果表明,秋季表层总叶绿素a、小型(20μm)、微型(2—20μm)和微微型(0.45—2μm)浮游植物叶绿素a浓度的范围分别为0.52—1.25、0.03—0.81、0.33—0.91、0—0.09μg/L,平均叶绿素a的浓度分别为0.76、0.19、0.53、0.03μg/L,对叶绿素a总量的贡献率分别为23.77%、72.26%和3.98%;底层总叶绿素a、小型(20μm)和微型(2—20μm)浮游植物叶绿素a浓度的范围分别为0.14—1.5、0.04—1.04、0.08—0.47μg/L,平均叶绿素a的浓度分别为0.46、0.22、0.24μg/L,对叶绿素a总量的贡献率分别为41.46%、58.50%。从垂直分布上来看,总叶绿素a浓度垂直变化为,表层底层;小型浮游植物垂直分布较为均匀;微型浮游植物垂直变化为,表层底层;微微型浮游植物垂直变化为,表层底层,且在表、底层均保持较低水平。秋季表层微型浮游植物(2—20μm)浓度与盐度呈正相关。底层总叶绿素a浓度与磷酸盐浓度呈正相关,小型浮游植物(20μm)浓度与磷酸盐和硅酸盐浓度均表现为正相关,微型浮游植物(2—20μm)浓度与温度呈正相关。统计分析结果表明,温度、盐度、磷酸盐及硅酸盐浓度是影响獐子岛及邻近海域秋季浮游植物粒级结构变动的重要因素。  相似文献   

3.
于2016年1月对獐子岛海域进行了航次调查,研究了獐子岛海域浮游植物粒级结构的空间分布特征及其环境影响因素。结果表明:冬季表层总叶绿素a、小型(20μm)、微型(2~20μm)和微微型(0.45~2μm)浮游植物叶绿素a浓度的范围分别为0.24~0.92、0.15~0.58、0.09~0.46、0~0.03μg·L-1,平均叶绿素a的浓度分别为0.69、0.36、0.33、0.002μg·L-1,小型、微型和微微型浮游植物对浮游植物总量的贡献率分别为51.72%、48.01%、0.26%;底层总叶绿素a、小型、微型和微微型浮游植物叶绿素a浓度的范围分别为0.29~1.77、0.12~1.45、0.17~0.50、0μg·L-1,平均叶绿素a的浓度分别为0.78、0.43、0.34、0μg·L-1,小型、微型和微微型浮游植物对浮游植物总量的贡献率分别为52.97%、47.03%、0;从垂直分布上来看,表、底层总叶绿素a及两种粒级浮游植物(20μm、2~20μm)的浓度均差异不显著,分布较为均匀;从水平分布上来看,总叶绿素a及两种粒级浮游植物(20μm、2~20μm)浓度的表、底层空间分布趋势相近,均呈现出由獐子岛海域西北部向南部逐渐降低的趋势。RDA分析表明,温度、盐度、溶解氧、颗粒态有机物、NO2--N和NH4+-N是影响獐子岛海域冬季浮游植物粒级结构变动的重要因素。  相似文献   

4.
楚科奇海及其海台区粒度分级叶绿素a与初级生产力   总被引:1,自引:0,他引:1  
刘子琳  陈建芳  张涛  陈忠元  张海生 《生态学报》2007,27(12):4953-4962
2003年夏季中国第二次北极科学考察期间,在楚科奇海及其海台区进行了叶绿素a浓度与初级生产力的现场观测。结果表明,观测海区叶绿素a浓度范围为0.009~30.390μg/dm3。表层浓度为0.050~4.644μg/dm3,平均值为(0.875±0.981)μg/dm3;陆架区次表层和底层的浓度高于表层,海台区深层水的浓度较低,200m层的浓度为(0.015±0.007)μg/dm3。水柱平均叶绿素a浓度区域性特征明显,陆架区高于海台区。R断面进行3趟重复观测,平均叶绿素a浓度分别为(2.564±1.496)μg/dm3,(1.329±0.882)μg/dm3和(0.965±0.623)μg/dm3,浓度呈下降趋势。观测站潜在初级生产力为0.263~4.186mgC/(m.3h),陆架区平均潜在初级生产力((2.305±1.493)mgC/(m.3h))比海台区((0.527±0.374)mgC/(m.3h))高近4倍。平均同化数为(1.22±1.14)mgC/(mgChla.h)。观测区细胞粒径>20μm的小型浮游生物对总叶绿素a浓度和初级生产力的贡献率分别为63.13%和65.16%,细胞粒径2.0~20μm的微型浮游生物和细胞粒径<2.0μm的微微型浮游生物对总叶绿素a和初级生产力的贡献率相差甚小,其对总叶绿素a浓度的贡献率分别为19.18%和17.69%,对总初级生产力的贡献率分别为20.11%和14.73%。  相似文献   

5.
东海赤潮高发区春季叶绿素a和初级生产力的分布特征   总被引:25,自引:3,他引:25  
2002年4-5月对东海海域进行了综合调查,分析了海区叶绿素a和初级生产力的分布特性.结果表明,大面站表层平均叶绿素a浓度为1.086mg·m-3.分级叶绿素a结果显示.春季东海浮游植物以微型和微微型(<20μm)占优势,其对海区叶绿素a的贡献为64%,超微型浮游植物(<5μm)占浮游植物生物量的27%.营养盐分布和浮游动物的摄食压力影响了叶绿素a及其粒级结构的分布.平均初级生产力为10.091mg·m-3·h-1。赤潮跟踪的R-03、RL-01、RG-01站的平均初级生产力为399.984mg·m-3·h-1.光和营养盐成为叶绿素和初级生产力平面分布的主要限制因子.表层叶绿素a和初级生产力均在调查海区的123·E纵断面冲淡区产生高值区.DC-11站浮游植物生物量异常高,表层叶绿素a达到9.082mg·m-3,初级生产力为128.79mg·m-3·h-1.但并未出现水色异常.  相似文献   

6.
胶州湾叶绿素a浓度及浮游植物的粒级组成   总被引:2,自引:0,他引:2  
潘胜军  沈志良 《应用生态学报》2009,20(10):2468-2474
2008年2、5、8和11月对胶州湾及邻近水域中表层叶绿素a浓度和浮游植物粒级组成进行了调查.结果表明:胶州湾内和湾外表层叶绿素a年平均浓度分别为4.90和2.03 mg·m-3;叶绿素a浓度的平面分布呈现自东北部及近岸向中部、南部及湾外递减的趋势;叶绿素a浓度季节变化明显,冬季和夏季浓度较高,春季次之,呈现温带海域双峰型的变化趋势.胶州湾浮游植物粒级组成以微型浮游植物为主,平均占叶绿素a总量的60.9%,其次是小型浮游植物,超微型浮游植物所占比例最低,与我国近海浮游植物粒级组成基本一致.与历史资料相比,微型浮游植物所占比例有所增加,超微型浮游植物所占比例降低.  相似文献   

7.
浮游植物粒级结构是海洋生态系统中的一个重要生物学因子。基于生物光学参数反演浮游植物粒级结构变化是当前水色遥感研究的热点问题。本文综合南海北部海区多年航次调查数据,对现有几类反演算法进行了区域性优化和验证评价。根据叶绿素 a 浓度(Chl a)或浮游植物吸收系数(aph (443))的阈值可实现南海北部海区小型(Micro)和微微型(Pico)浮游植物主导的划分,微型(Nano)的判别精度较差。基于归一化吸收光谱提取的粒级指数可定性地表征浮游植物粒级结构的综合变化趋势。基于叶绿素 a 浓度的三组分模型,较好地模拟浮游植物粒级结构的变化规律,可实现分粒级叶绿素 a 浓度的定量反演,Pico 粒级的反演精度较高;在此基础上,耦合浮游植物吸收光谱变化规律和总叶绿素 a 浓度定量反演粒级结构的模型,进一步提高了 Micro 和Nano 粒级的反演精度,且线性相关程度增强。  相似文献   

8.
春季季风转换期间孟加拉湾的初级生产力   总被引:1,自引:0,他引:1  
2010年中国科学院东北印度洋科学考察期间,对孟加拉湾水域初级生产力展开了研究.孟加拉湾表层水体的水温较高,盐度变化范围较大,且上层水体营养盐含量较低,在真光层底部营养盐浓度突然增加.表层叶绿素a浓度较低(<0.1 mg/m3),叶绿素a最大值常出现在75 m水深处,上层水体浮游植物的生长受氮限制明显.表层潜在初级生产力低于0.2mgcm-3h-1,且初级生产速率在50-75 m出现最大值.水柱中初级生产力变化范围为199-367 mgCm-2d-1,高值出现在88°-89°(E)附近.浮游植物固碳的主要贡献者是微微型浮游生物(<3 μm),其次是小型浮游生物(>20 μm)和微型浮游生物(3-20 μm),但表层与75 m水深处固碳浮游植物的结构有一定差异.将孟加拉湾与阿拉伯海初级生产力进行对比,孟加拉湾水体初级生产力显著低于阿拉伯海,且初级生产力的影响因素有着显著的差异.  相似文献   

9.
长江口冬季和春季浮游植物的粒级生物量   总被引:6,自引:1,他引:5  
根据2005年2月28日—3月10日和5月30日—6月4日在长江口及其邻近水域进行的多学科综合外业调查,报道了冬季和春季浮游植物粒级生物量的空间分布和组成特征,并探讨了影响浮游植物粒级生物量的环境因子.结果表明:冬季长江口及其邻近水域表层叶绿素a平均浓度为1.28 mg·m-3,高值区集中在口门附近;小粒径浮游植物(<20 μm)对浮游植物生物量的贡献率为66.7%,但在冲淡水区大粒径浮游植物(>20 μm)占据优势.春季长江口及其邻近水域表层叶绿素a浓度大幅增加,口门内、外的平均值分别为0.67和6.03 mg·m-3,122.5°—123.0° E间水域因水华爆发出现显著的叶绿素a高值区;小粒径浮游植物对浮游植物生物量的贡献高达83.5%,其优势在水华区尤为明显.典型站位浮游植物粒级生物量的垂向分布显示,2种粒径浮游植物叶绿素a浓度的差异随水深增加而减小,至底层二者浓度相当.根据所获的环境因子资料,盐度和营养盐是影响长江口及其邻近水域浮游植物粒级生物量分布和组成的重要环境因子.  相似文献   

10.
秦皇岛海域微微型藻华期间叶绿素a分级研究   总被引:2,自引:0,他引:2  
2011年6月秦皇岛北戴河海域暴发微微型浮游植物赤潮,对北戴河海域进行了3次海域调查,探讨和分析了秦皇岛海域赤潮暴发期间的6月和非赤潮期间的7、8月表层浮游植物的粒级结构分布特征,并对环境因子进行了相关影响分析.赤潮期间整个调查海域范围内叶绿素a(Chl.a)平均含量为10.85±5.13μg/L,非赤潮期间7月、8月Chl.a的平均含量为5.50±3.60μg/L.赤潮期间和非赤潮期间各粒级浮游植物Chl.a含量对Chl.a总量的贡献率有所差异,赤潮期间6月小型(Microphytoplankton,>20μm)、微型(Nanophytoplankton,2~20μm)和微微型(Picophytoplankton,0.74~2μm)浮游植物对总Chl.a的贡献率分别为2.1%、48.3%和49.6%.非赤潮期间7月小型、微型、微微型对总Chl.a的贡献率分别为14.4%、51.6%、24.0%.通过浮游植物粒径分级Chl.a和环境因子的相关性分析,发现在赤潮期间调查海域浮游植物Chl.a与硝酸盐的相关性系数随着浮游植物粒径的增大而从负逐渐变正.发现在非赤潮区微型和微微型浮游植物与OD显著正相关(p<0.01).  相似文献   

11.
The influence of the size distribution of phytoplankton on changes in the planktonic food web structures with eutrophication was examined using natural planktonic communities in two world-famous lakes: Lake Baikal and Lake Biwa. The size distribution of phytoplankton and the ratio of heterotrophic to autotrophic biomass (H/A ratio), indicating the balance between primary production and its consumption, were investigated in the lakes of different trophic status. The results revealed that microphytoplankton (>20μm) in mesotrophic Lake Biwa, and picophytoplankton (<2μm) or nanophytoplankton (2–20μm) in oligotrophic Lake Baikal, comprised the highest proportion of the total phytoplankton biomass. The H/A ratio was lower in Lake Biwa (<1) than in Lake Baikal (>1). The low H/A ratio in Lake Biwa appeared to be the consequence of the lack of consumption of the more abundant microphytoplankton, which were inferior competitors in nutrient uptake under oligotrophic conditions but less vulnerable to grazing. As a result, unconsumed microphytoplankton accumulated in the water column, decreasing the H/A ratio in Lake Biwa. Our results showed that food web structure and energy flow in planktonic communities were greatly influenced by the size distribution of phytoplankton, in conjunction with bottom-up (nutrient uptake) and top-down (grazing) effects at the trophic level of primary producers.  相似文献   

12.
Results are presented from size fractionated chlorophyll a (Chla) and primary production studies along a transect between Antarcticaand southern Africa during the second South African AntarcticMarine Ecosystem Study (SAAMES II), conducted in late australsummer (January to February) 1993. Total integrated Chl a alongthe transect was highest in the vicinity of the Marginal IceZone (MIZ) and Antarctic Polar Front (APF). At these stations,integrated Chl a biomass was always >25 mg Chl a m–2and was dominated by microphytoplankton. Although nominal increasesinChl a biomass were also associated with the Subantarctic Front(SAF) and Subtropical Convergence (STC), total Chl a biomassin these regions was dominated by nanophytoplankton. Withinthe inter-frontal regions, total integrated Chl a biomass waslower, generally <25 mg Chl a m–2, and was always dominatedby nanophytoplankton. An exception was found in the AgulhasReturn Current (ARC) where picophytoplankton dominated. Totaldaily integrated production along the transect ranged between60 and 436 mg C m–2 day–1. Elevated production rateswere recorded at stations occupied in the vicinity of the MIZand at all the major oceanic frontal systems. The contributionsof the various size fractions to total daily production displayedthe same spatial pattern as integrated biomass, with microphytoplanktonbeing the most important contributor in areas characterizedby elevated phytoplankton biomass. Outside these regions, nanophytoplanktondominated the total phytoplankton production. Again, an exceptionwas found in the ARC north of the STC where picophytoplanktondominated total production. There, the lowest production alongthe entire transect was recorded, with total daily integratedproduction always <90 mg C m–2 day–1. The increasedproduction rates recorded in the MIZ appeared to result fromincreased water column stability as indicated by a shallow mixed-layerdepth. Within the inter-frontal regions, the existence of adeep mixed layer appeared to limit phytoplankton production.Low silicate concentrations in the waters north of the APF mayalso have limited the growth of large microphytoplankton.  相似文献   

13.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

14.
Phytoplankton are classfied into three groups based on size: microphytoplankton (>20 μm),nanophytoplankton (2-20 μm),and picophytoplankton(<2 μm) (Sieburth et al.1978)[1].Picophytoplanktonare composed of three groups:Prochlorococcus,Synechococcus,and picophytoeukaryotes.The former two are unicellular cyanobacteria.  相似文献   

15.
孙军  田伟 《应用生态学报》2011,22(1):235-242
于2009年4月在长江口及其邻近水域采集浮游植物水样,用Utermöhl方法进行初步分析,同时进行叶绿素a粒级分离研究,并采用典范对应分析讨论了浮游植物优势物种与各环境因子的关系.本次调查共鉴定浮游植物3门46属64种(不包括未定名种),其中硅藻33属45种(不包括未定名种),甲藻12属18种(不包括未定名种),定鞭藻1属1种,硅藻在细胞丰度和物种丰富度上占有优势.浮游植物的生态类型主要以温带近岸种为主,优势物种为多尼骨条藻(Skeletonema dohrnii)、具槽帕拉藻(Paralia sulcata)、菱形海线藻(Thalassionema nitzschioides)、尖刺伪菱形藻(Pseudo-nitzschia pungens)、颗粒直链藻狭型变种(Melosira granulata var angustissima)、柔弱伪菱形藻(Pseudo-nitzschia delicatissima)和柔弱几内亚藻(Guinardia delicatula),同时调查区也出现少数的半咸水种和大洋种.调查区浮游植物细胞丰度介于0.3~13447.7 cells·ml-1,平均为1142.385 cells·ml-1,硅藻的细胞丰度显著高于甲藻.细胞丰度高值区位于调查区的中部偏北区域,以多尼骨条藻为主.垂向上在表层出现最大值,随着深度的增加丰度降低.调查区的Shannon多样性指数和Pielou均匀度指数的平面分布基本一致,并且与细胞丰度呈镶嵌分布,即在细胞丰度高的调查区中北部较低.表层叶绿素a浓度介于0.34~29 g·L-1,平均为3.30 g·L-1.叶绿素a的高值区主要位于调查区的中部偏北区域,其分布趋势与浮游植物和硅藻细胞丰度的分布基本一致.主要粒级组分为小型浮游植物(microphytoplankton),而其他靠近外海一侧的站位则以微型浮游植物(2~20 μm, nanophytoplankton)和超微型浮游植物(<2 μm, picophytoplankton)为主.与环境因子的典范对应分析(CCA)表明,春季长江口影响最优势物种多尼骨条藻分布的主要因素为硝酸盐、pH和微型浮游动物,而包括甲藻在内的其他各物种则主要受盐度、磷酸盐和硅酸盐影响.本次调查浮游植物定量研究方法与以往不同,在长江口今后需要加强骨条藻的个体生态学研究.  相似文献   

16.
The impact of the El Ni?o 1997-1998 phenomenom on plankton dynamics was studied during 1997 at the Punta Morales estuary, Gulf of Nicoya, Pacific coast of Costa Rica. The study covered dry season/transition and the rainy season. Phytoplankton (microphytoplankton > 30 microm and nanophytoplankton) were collected at two depths (50 and 10% light incidence) using a 5 L Niskin bottle, and samples taken to determine chlorophyll a. Temperature, salinity, oxygen, and Secchi depth were measured. Horizontal sub-surface zooplankton hauls were conducted with a conic zooplankton net of 0.49 m diameter and 280 microm mesh width, supplied with a flowmeter. Surface sea water temperature average was 29.9 +/- 0.9 degrees C, with a maximum of 31.5 degrees C in April and a minimun of 28 degrees C in March and October. Chlorophyll a concentration (phytoplankton net) averaged 3.1 +/- 1.7 mg/m3, with higher values during the rainy season and lower values during the transition. Nanophytoplankton chlorophyll a concentration averaged 2.5 +/- 1.2 mg/m3, with a maximum during the transition season. For both fractions there were significant differences between transition and rainy seasons, and for nanophytoplankton between dry and transition seasons (p < 0.05). In the last case, differences were explained by temperature. Herbivorous copepods dominated the abundance and biomass of zooplankton, with a biomass maximun of 167.3 in October and a minimun of 7.1 mg DW/m3 in December. These values are higher than those found some years ago in the same zone and those reported for some places in the Caribbean. The El Ni?o 1997-1998 phenomenon in the plankton dynamics appears to have produced a change in the phytoplankton structure. This is the first attempt to evaluate the possible impact of El Ni?o on the plankton dynamics of the Pacific coast of Central America.  相似文献   

17.
It is now well established that the size distribution of phytoplankton plays an important role in primary production processes and nutrient dynamics of coastal environment. In situ observations showed that nanophytoplankton (3–20 μm) contributed 72.08% and58.18% of phytoplankton biomass and 58.32% and 41.14% of primary productivity to Xiamen Western Waters and the northern Taiwan Strait, respectively; picophytoplankton (0.2–3 μm) dominated the biomass (64.70%) and productivity (66.09%) in the southern Taiwan Strait. Furthermore, nanophytoplankton accounted for 75% of phosphate uptake with the highest rate constant (8.3×10-5 s-1) and uptake rate in unit water volume (5.4×10-5 mmol dm-3s-1); picophytoplankton had the highest uptake rate in unit biomass (5.4×10-5 mmol mg-1s-1) and photosynthetic index (3.8 mgC mgChl a-1h-1). All the results highlighted the remarkable characteristics of small size ranged (0.2–20 μm) phytoplankton in subtropical coastal environments: main contributor to phytoplankton biomass and production, high efficiency on organic carbon production and nutrient recycling. The far reaching environmental and ecological implications were discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
SUMMARY. 1. An investigation of the seasonal and depth distribution of populations of autotrophic picoplankton (0.2–2 μm), nanophytoplankton (>2<20 μm) and larger microalgal plankton (>20μm) was carried out over 21/2 years, 1988–90, in Llyn Padarn, a mesotrophic upland lake in North Wales. 2. Cell numbers of picophytoplankton ranged from <102 to >106 cells cm?3. Maximum numbers of nanoplankton were c. 104 cells cm?3 and the greatest abundance of microalgal plankton, diatoms, reached 12 × 103 cells cm?3. 3. Three types of picoalgae were distinguished: coccoid to oval Synechococcus—Synechocystis, the rod-shaped Synchecococcus capitatus Bailey-Watts & Komárek and Chlorella minutissima Fott & Nováková, with maximum numbers of 1.2 × 106, 37.8 × 103 and 44.1 × 103 cells cm?3, respectively. 4. Picophytoplankton exhibited periods of exponential growth: the first in spring, and the second in August—September with an intervening population minimum in early to midsummer. Specific rates of population increase for picophytoplankton were low, with minimum apparent generation times of 3.8 days in summer 1989. 5. Nanophytoplankton included seven species of phytoflagellates and two non-motile species. These algae were present for about 10 months in each year exhibiting a fluctuation in population density of 102?-103 cells cm?3. 6. There were spring and autumn maxima in chlorophyll a concentrations in the lake water corresponding to the growth of planktonic diatoms. Maximum total biomass concentration was 35 mg m?3 chlorophyll a, whereas pico, nano and microphytoplankton had individual maxima of 7.7, 8.4 and 31.0 mg m?3 chlorophyll a, respectively. Picophytoplankton often contributed > 60% of the total algal chlorophyll a in the epilimnion. 7. The growth patterns and seasonal periodicities of the three size-categories of planktonic algae in Llyn Padarn were distinct. Picophytoplankton persist throughout much of the year with periods of very low abundance, < 100 cells cm?3, occurring in winter and midsummer. Thus for much of the year, there was a large inoculum of these cells in the lake to initiate growth leading to the population maxima in spring and late summer. Nanoplankton populations, a diverse assemblage, fluctuated in numbers over the period February–November; no population decline in midsummer comparable to picophytoplankton was observed. The larger microphyloplankton exhibited classical seasonal periodicity, namely diatom growth in spring and late summer–autumn with growth of large-celled chlorophytes in the intervening summer period.  相似文献   

19.
To study the effects of aerosol particulates originated from Asian dust on the growth of eukaryotic phytoplankton in the oligotrophic open ocean, we conducted deck-board incubation experiments in the oligotrophic region of Northwestern Pacific Ocean (NWPO). Our results showed that when dust was added at a concentration of 2?mg/L (Dust-2), the NO3N concentration increased by 3.2 fold, and chlorophyll a (chl a) concentration of nano- and micro-eukaryotic phytoplankton increased, while that of pico-eukaryotic phytoplankton did not change significantly. The microphytoplankton abundance increased but the species number decreased in Dust-2. Community structure of eukaryotic microphytoplankton also changed after dust addition. The abundance of diatoms in Dust-2 (23,072 cells/L) was 4.0 fold of that in the control (5750 cells/L), and 2.4 fold of that in Dust-1 (0.2?mg/L of dust addition) (9425 cells/L) at the 7th day of incubation. Abundance of dinoflagellates decreased in Dust-2, being 42.2% that of the control at the 7th day of the incubation. Effects of dust addition on the growth of phytoplankton differed among the dominant genera: growth of Pseudo-nitzschia and Chaetoceros were promoted while that of Prorocentrum was inhibited, and growth of Thalassiosira, Heterocapsa and Scrippsiella was not influenced significantly. The growth of nano- and pico-eukaryotic phytoplankton was promoted, with the cell abundance in Dust-2 2.4 fold of that in control. Our results indicated that Asian dust-originated aerosol particulates could provide nutrients to the oligotrophic NWPO, increase the marine productivity in the area, and alter the eukaryotic phytoplankton community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号