首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pulsed electromagnetic fields promote healing of delayed united and ununited fractures by triggering a series of events in fibrocartilage. We examined the effects of a pulsed electromagnetic field (recurrent bursts, 15.4 Hz, of shorter pulses of an average of 2 gauss) on rabbit costal chondrocytes in culture. A pulsed electromagnetic field slightly reduced the intracellular cyclic adenosine 3',5'-monophosphate (cAMP) level in the culture. However, it significantly enhanced cAMP accumulation in response to parathyroid hormone (PTH) to 140% of that induced by PTH in its absence, while it did not affect cAMP accumulation in response to prostaglandin E1 or prostaglandin I2. The effect on cAMP accumulation in response to PTH became evident after exposure of the cultures to the pulsed electromagnetic field for 48 h, and was dependent upon the field strength. cAMP accumulation in response to PTH is followed by induction of ornithine decarboxylase, a good marker of differentiated chondrocytes, after PTH treatment for 4 h. Consistent with the enhanced cAMP accumulation, ornithine decarboxylase activity induced by PTH was also increased by the pulsed electromagnetic field to 170% of that in cells not exposed to a pulsed electromagnetic field. Furthermore, stimulation of glycosaminoglycan synthesis, a differentiated phenotype, in response to PTH was significantly enhanced by a pulsed electromagnetic field. Thus, a pulsed electromagnetic field enhanced a series of events in rabbit costal chondrocytes in response to PTH. These findings show that exposure of chondrocytes to a pulsed electromagnetic field resulted in functional differentiation of the cells.  相似文献   

3.
Pulsed electromagnetic fields (PEMFs) have been used extensively in bone fracture repairs and wound healing. It is accepted that the induced electric field is the dose metric. The mechanisms of interaction between weak magnetic fields and biological systems present more ambiguity than that of PEMFs since weak electric currents induced by PEMFs are believed to mediate the healing process, which are absent in magnetic fields. The present study examines the response of human umbilical vein endothelial cells to weak static magnetic fields. We investigated proliferation, viability, and the expression of functional parameters such as eNOS, NO, and also gene expression of VEGF under the influence of different doses of weak magnetic fields. Applications of weak magnetic fields in tissue engineering are also discussed. Static magnetic fields may open new venues of research in the field of vascular therapies by promoting endothelial cell growth and by enhancing the healing response of the endothelium. Bioelectromagnetics 31:296–301, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
A theoretical model of the mechanism of action of weak electromagnetic fields on water solutions has been constructed. The model predicts the redistribution of protons on spatial inhomogeneities in water medium. It is shown that an external field leads to the phasing of ions on the standing wave, which is considered as an inhomogeneity. As a result of an inhomogeneous distribution of hydrogen ions, local regions with a higher and lower acidity arise. The acidity of medium substantially affects the rate of chemical reactions; therefore, the exposure to a weak external field can change this parameter. The effect of local changes in acidity on the rate of hydrogen peroxide production was considered. It was predicted that the exposure to a weak electromagnetic field with particular parameters can increase the rate and, as a consequence, the concentration of hydrogen peroxide in solution.  相似文献   

5.
A single whole-body preirradiation with thermogenic microwaves modifies the dynamics of the glial reactions of visual centers of guinea pigs induced by median lethal X-radiation doses. A combination of the two factors produces a synergistic effect, estimated by the degree of alteration of astrocytes and oligodendrocytes at early times after exposure, leads to early activation of microglia, and reduces radiation-induced alterations in glia at later times (25-60 days).  相似文献   

6.
Rat tendon fibroblast (RTF) and rat bone marrow (RBM) osteoprogenitor cells were cultured and exposed to AC and/or DC magnetic fields in a triaxial Helmholtz coil in an incubator for up to 13 days. The AC fields were at 60 and 1000 Hz and up to 0.25 mT peak to peak, and the DC fields were up to 0.25 mT. At various combinations of field strengths and frequencies, AC and/or DC fields resulted in extensive detachment of preattached cells and prevented the normal attachment of cells not previously attached to substrates. In addition, the fields resulted in altered cell morphologies. When RTF and RBM cells were removed from the fields after several days of exposure, they partially reattached and assumed more normal morphologies. An additional set of experiments described in the Appendix corroborates these findings and also shows that low-frequency EMF also initiates apoptosis, i.e., programmed cell death, at the onset of cell detachment. Taken together, these results suggest that the electromagnetic fields result in significant alterations in cell metabolism and cytoskeleton structure. Further work is required to determine the relative effect of the electric and magnetic fields on these phenomena. The research has implications for understanding the role of fields in affecting bone healing in fracture nonunions, in cell detachment in cancer metastasis, and in the effect of EMF on organisms generally. Bioelectromagnetics 18:264–272, 1997. © Wiley-Liss, Inc.  相似文献   

7.
The biological effect of ionizing radiation (IR) in lethal and sublethal doses on the sodium-potassium transport systems in the fractions, enriched of neuron and glial cells and in cortex slices from rat brain was investigated. It was shown that IR leads to marked disturbances in the activity of Na,K-ATPase both in neuron and in glial cells. Some phasic character of alterations may be noted, which is expressed in different degree for various cellular elements of the brain. Using the surviving brain slices we have shown that IR causes essential phasic changes in potassium ion reaccumulation in different times after exposure. The mechanisms of the disturbance of Na,K-pump function in nervous tissue after irradiation are under discussion.  相似文献   

8.
It has been shown that exposure to weak combined collinear magnetic fields (permanent component 42 mT; amplitude of alternating component 40 nT, frequency 3.7 Hz) or millimeter waves with a frequency of 36 GHz and power density of 100 mT/cm2 substantially stimulates the growth of the regeneration blastema in the tail fragment of planaria when the exposure to fields precedes the cutting of the planaria body. This effect is more clearly pronounced during the treatment of planaria with magnetic field. If the treatment with weak physical factors is carried out after the cutting of planaria, the effect of the field is two times less pronounced (exposure to magnetic waves) or is not evident at all (exposure to electromagnetic radiation).  相似文献   

9.
10.
Effects of 50 Hz electromagnetic fields on phagocytosis and free radical production were examined in mouse bone marrow-derived macrophages. Macrophages were in vitro exposed to electromagnetic fields using different magnetic field densities (0.5-1.5 mT). Short-time exposure (45 min) to electromagnetic fields resulted in significantly increased phagocytic uptake (36.3% +/- 15.1%) as quantified by measuring the internalization rate of latex beads. Stimulation with 1 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) showed the same increased phagocytic activity as 1 mT electromagnetic fields. However, co-exposure to electromagnetic fields and TPA showed no further increase of bead uptake, and therefore we concluded that because of the absence of additive effects, the electromagnetic fields-induced stimulation of mouse bone marrow-derived macrophages does not involve the protein kinase C signal transduction pathway. Furthermore, a significant increased superoxide production after exposure to electromagnetic fields was detected.  相似文献   

11.
Fertilized eggs of Gallus domesticus were exposed continuously during their 21-day incubation period to either 50- or 60-Hz sinusoidal electric fields at an average intensity of 10 Vrms/m. The exposure apparatus was housed in an environmental room maintained at 37 degrees C and 55-60% relative humidity (RH). Within 1.5 days after hatching, the chickens were removed from the apparatus and tested. The test consisted of examining the effect of 50- or 60-Hz electromagnetic fields at 15.9 Vrms/m and 73 nTrms (in a local geomagnetic field of 38 microT, 85 degrees N) on efflux of calcium ions from the chicken brain. For eggs exposed to 60-Hz electric fields during incubation, the chicken brains demonstrated a significant response to 50-Hz fields but not to 60-Hz fields, in agreement with the results from commercially incubated eggs [Blackman et al., 1985a]. In contrast, the brains from chicks exposed during incubation to 50-Hz fields were not affected by either 50- or 60-Hz fields. These results demonstrate that exposure of a developing organism to ambient power-line-frequency electric fields at levels typically found inside buildings can alter the response of brain tissue to field-induced calcium-ion efflux. The physiological significance of this finding has yet to be established.  相似文献   

12.
We describe an approach to aiding the design and interpretation of experiments involving biological effects of weakly interacting electromagnetic fields that range from steady (dc) to microwave frequencies. We propose that if known biophysical mechanisms cannot account for an inferred, underlying molecular change signal-to-noise ratio, (S/N)gen, of a observed result, then there are two interpretation choices: (1) there is an unknown biophysical mechanism with stronger coupling between the field exposure and the ongoing biochemical process, or (2) the experiment is responding to something other than the field exposure. Our approach is based on classical detection theory, the recognition that weakly interacting fields cannot break chemical bonds, and the consequence that such fields can only alter rates of ongoing, metabolically driven biochemical reactions, and transport processes. The approach includes both fundamental chemical noise (molecular shot noise) and other sources of competing chemical change, to be compared quantitatively to the field induced change for the basic case that the field alters a single step in a biochemical network. Consistent with pharmacology and toxicology, we estimate the molecular dose (mass associated with field induced molecular change per mass tissue) resulting from illustrative low frequency field exposures for the biophysical mechanism of voltage gated channels. For perspective, we then consider electric field-mediated delivery of small molecules across human skin and into individual cells. Specifically, we consider the examples of iontophoretic and electroporative delivery of fentanyl through skin and electroporative delivery of bleomycin into individual cells. The total delivered amount corresponds to a molecular change signal and the delivery variability corresponds to generalized chemical noise. Viewed broadly, biological effects due to nonionizing fields may include animal navigation, medical applications, and environmental hazards. Understanding necessary conditions for such effects can be based on a unified approach: quantitative comparison of the estimated chemical change due to a particular electromagnetic field exposure to that due to competing influences, with both estimates based on a biophysical mechanism model within the context of a model of a biological system.  相似文献   

13.
We have studied glial activation in rat cerebellar neuronal-glial cultures after inducing neuronal death using various stimuli. Cultures were exposed to 100 microm glutamate for 20 min, which induces excitotoxic neuronal death, or to potassium/serum deprivation, which induces apoptosis of granule neurons. We evaluated alterations in several parameters related to glial activation: nuclear factor-kappaB activation, nitric oxide and tumour necrosis factor-alpha production, which are associated with a pro-inflammatory response, glial proliferation and phagocytic activity. Although the two experimental models of neuronal damage resulted in the death of most neuronal cells within 24 h, differences were observed in the response of the various glial parameters evaluated. While nitric oxide production was not detected in any case, tumour necrosis factor-alpha production, nuclear factor-kappaB activation and glial proliferation were only induced in the presence of excitotoxic neuronal death. However, phagocytosis was induced in both cases, although earlier in the case of apoptotic neuronal death. These results show that glial cells respond to excitotoxic neuronal death with an inflammatory response associated with proliferation and phagocytosis. In contrast, whilst glial cells do not produce pro-inflammatory molecules in the presence of apoptotic neuronal death, phagocytic activity is rapidly induced.  相似文献   

14.
The aim of this study was to evaluate the cochlear functionality of Sprague-Dawley rats exposed to electromagnetic fields at 900 MHz and to gentamicin by distortion product otoacoustic emissions, which are a well-known indicator of the status of the cochlea's outer hair cells. A population of 32 rats was divided into four groups: group 1 was treated with daily intramuscular injections of 150 mg/kg body weight gentamicin for 15 days; group 2 was treated with daily intramuscular injections of 150 mg/kg body weight gentamicin for 15 days and exposed to electromagnetic fields; group 3 was exposed to electromagnetic fields; group 4 was sham-exposed. Rats were exposed 2 h/day, 5 days/week for 4 weeks at a local SAR of 4 W/kg in the ear (continuous wave at 900 MHz). Distortion product otoacoustic emissions tests were carried out before, during and after the combined exposure. The analysis of the data showed no subchronic exposure to electromagnetic fields on the inner auditory system of rats in either normal ears or ears exposed to a well-recognized pathological agent.  相似文献   

15.
A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD).  相似文献   

16.
A technique based on release of calcium ions from in vitro preparations of avian brain tissues has been used by several investigators to demonstrate a biological effect of weak electric and magnetic fields. When the tissues have been exposed to ELF-modulated, VHF or UHF fields, enhanced release of calcium ions has resulted. In contrast, when the tissues have been exposed directly to an ELF field, outcomes have differed. Both inhibition and enhancement in release of calcium ions have been reported. We now find that either outcome--or a null result--is possible, depending on the temperature of tissue samples before and during exposure. Avian-brain tissues were exposed to 16-Hz sinusoidal electromagnetic fields at 14.1 Vrms/m (in air) and 64 nTrms. During 20-min exposures, as tissue-sample temperature rose by 0.7 to 2.5 degrees C to a final temperature of 35, 36, or 37, but not of 38 or 39 degrees C, an enhanced release of ions was observed. When the temperature was stable during exposure (i.e., constant within +/- 0.3 degrees C) at a final value of 36 or 37, but not of 35 or 38 degrees C, the quantity of ions released was reduced. And when descending by 0.7 to 1.5 degrees C to any final temperature from 35 to 38 degrees C, a null result occurred. These findings may reconcile the apparent disagreement in the direction of a field-induced response, and they may explain why experimental outcomes have been difficult to confirm in some laboratories. Of greater importance, the findings may also provide insight into the mechanism of the field-induced phenomenon.  相似文献   

17.
A total of 550 fertile chicken eggs (White Leghorn) were exposed to a radiofrequency (RF) electromagnetic field of 1.25 GHz (continuous wave) at six different power flux densities in the range of 9.0-0.75 mW/cm(2). The eggs were exposed either continuously throughout the whole 21 days of incubation (long-term exposure) or in a short-term exposure (1-2 h/day). The temperatures of the embryonic tissue and the amniotic fluid, respectively, were measured with inserted temperature probes. This study was designed to investigate the relationship between exposure and temperature changes in exposed tissues, without considering biological and medical effects. This knowledge is of general interest for studies of nonthermic teratological or embryo-lethal effects of exposure to electromagnetic fields (EMFs). Throughout the entire 21 days of embryonic development, the mean temperature increases in the eggs during the exposure were found to be up to 0.25 degrees C for a power flux density of 1.25 mW/cm(2) and increased to 2.3 degrees C for 9.0 mW/cm(2). The corresponding maximum whole-body SARs for the embryos over the 21 days of embryonic development were 1.45 and 10.44 W/kg, respectively. At 0.75 mW/cm(2) (0.87 W/kg) the extent of the RF-field induced hyperthermia was within the measurement accuracy (+/-0.1 degrees C) of the temperature probes used in the tests. The field-induced temperature increase was greatest in the first week of incubation and was less pronounced in the last (third) week before hatching. In both the short- and the long-term exposures, the temperature of the exposed tissue and the amniotic fluid, respectively, reached its maximum (asymptotic) approximately 40-50 min after the RF field was switched on. After the field was switched off, the temperature inside the exposed eggs returned to its initial value within 40-50 min.  相似文献   

18.
19.
The main objective of our study is to investigate whether an enhancement of the immune system in end-stage cancer patients is achieved by exposure to coherent electromagnetic fields. For this reason, 15 end-stage cancer patients were exposed at low intensity, coherent electromagnetic fields at radiofrequencies ranging from 600?kHz-729?Hz, for 8?h/day, 6 days/week for 4 weeks. NKs number and cytotoxicity of NK T-lymphocytes versus K562 cancer cell line were estimated by flow cytometry, before and after exposure. Data showed that the exposure of the end-stage cancer patients to the coherent electromagnetic fields resulted in a significant increase of the number and the cytotoxicity of the NK T-lymphocytes against cancer cells, in all patients. Exposure to coherent EMFs at radiofrequencies increases the number and cytotoxicity of NK T-lymphocytes, which may contribute to the improvement of cancer patients' status.  相似文献   

20.
The main objective of our study is to investigate whether an enhancement of the immune system in end-stage cancer patients is achieved by exposure to coherent electromagnetic fields. For this reason, 15 end-stage cancer patients were exposed at low intensity, coherent electromagnetic fields at radiofrequencies ranging from 600 kHz–729 Hz, for 8 h/day, 6 days/week for 4 weeks. NKs number and cytotoxicity of NK T-lymphocytes versus K562 cancer cell line were estimated by flow cytometry, before and after exposure. Data showed that the exposure of the end-stage cancer patients to the coherent electromagnetic fields resulted in a significant increase of the number and the cytotoxicity of the NK T-lymphocytes against cancer cells, in all patients. Exposure to coherent EMFs at radiofrequencies increases the number and cytotoxicity of NK T-lymphocytes, which may contribute to the improvement of cancer patients' status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号