首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在注射低剂量LRH-A的同时注射多巴胺拮抗物pimozide(PIM),能显著增强LRH-A诱导的排卵效应,排卵率达到100%。 LRH-A+PIM能促进脑垂体GtH细胞的合成和分泌,而注射多巴胺能抑制LRH-A诱导的GtH释放活动。  相似文献   

2.
3.
多马胺能药物对鲇鱼促性腺激素(GtH)分泌活动的影响   总被引:1,自引:0,他引:1  
以珠江流域鲇鱼(silurus asotus)为实验材料,研究了多巴胺(DA)能药物(DA及其D-2型受体拮抗物 ,DOM)对鲇鱼促性腺激素(GtH)释放的影响,结果表明,在性腺发育的各个时期,单独注射DOM(5ug/g)均不能显著提高鲇鱼血液基础GtH水平,当DOM与LHRH-A联合注射时能显著增强LHRH-A刺激GtH释放的作用;DA只能抑制GnRH诱导的GtH释放,对基础GtH释放无抑制作用,这种生殖内分泌调节方式与鲇形目的革胡子鲇(Clarias gariepinus)和大鳍Hu(Mystus macropterus)相似,而与鲤形目的鲁科(Cyrpindiae)鱼类不同。  相似文献   

4.
雌二醇通过正反馈作用能促进脑垂体促性腺激素(GtH)细胞的合成活动,使脑垂体GtH水平显著升高。促黄体素释放激素的类似物(LHRH-A)和利血平(reserpine,RES)能促进脑垂体GtH细胞的分泌活动,使血液中GtH含量显著升高。鲤垂体、人体绒毛膜促性腺激素(HCG)和LHRH—A三种激素混合进行多次注射能诱导雌雄鳗鲡性腺发育成熟,其催熟效果明显优于它们的分别单独多次注射或者鲤鱼脑垂体和HCG的多次注射,表明外源的和内源的促性腺激素对于诱导鳗鲡性腺发育成熟都是重要的。鳗鲡脑垂体GtH细胞超显微结构的观察证实它们在激素诱导性腺发育成熟过程中处于活跃的合成与分泌状态。  相似文献   

5.
In order to evaluate the influence of the season (the stage of gonad maturity) on the modulatory role of endogenous opioid peptides in LH secretion in fish, sexually mature male carp (Cyprinus carpio L.) were intravenously injected with naltrexone-opioid receptor antagonist (5 or 50 microg kg(-1)) in the period of natural spawning (June) or gonad recrudescence (December). Moreover, the possible involvement of the dopaminergic system was studied in fish pre-treated with pimozide (dopamine receptor antagonist) and in intact fish. Blood samples were taken every minute, up to 10 min after naltrexone injection. In June, naltrexone significantly lowered LH levels in comparison to saline injected males. In December, there were no differences between saline and naltrexone-injected carps. In fish pre-treated with pimozide, neither in June nor in December were any significant differences in LH levels between control group and the groups injected with naltrexone found. The results showed that, in male carp, LH secretion under the influence of naltrexone depends on the stage of gonad maturity what suggests that the feedback of gonadal steroids on LH release could be mediated by the endogenous opioids. The role of dopamine in these processes is also discussed.  相似文献   

6.
The effects of naloxone infusion given together with an infusion of LRH on gonadotropin secretion, were studied in 6 normal male volunteers before and after pretreatment with the GABA-transaminase inhibitor, valproic acid. In concordance with previous studies, naloxone infusion augmented the LRH-stimulated secretion of LH. Baseline serum LH concentrations were not significantly different after valproic acid pretreatment compared to control values. Similarly, valproic acid pretreatment failed to blunt the naloxone-augmented LRH-stimulated secretion of LH. Our data suggest that the previously reported animal studies on the central suppressive effect of GABA on endogenous LRH release is less prominent than the suppressive effect of opioidergic regulatory mechanisms in the human male.  相似文献   

7.
以1龄性腺发育中期鲤鱼为材料,采用腹腔(i.p)注射的方法,研究不同的下丘脑肽和神经递质对鲤鱼促性腺激素(GtH)和生长激素(GH)分泌的影响。结果表明:促甲状腺激素释放激素(TRH)、L-多巴(L-DOPA)、甲基睾酮(MT)、γ-氨基丁酸(GABA)、促黄体素释放激素类似物(LHRH-A)和三碘甲状腺原氨酸(T3)都能显著刺激GtH的分泌,但最大效应时间各不相同。TRH和LHRH-A能促进GH的分泌,L-DOPA、MT、GABA对血清GH水平没有明显影响;T3则对GH分泌有一定的抑制作用。这说明鲤鱼GtH和GH的分泌除了受各自的下丘脑释放因子和释放抑制因子的双重神经内分泌调控外,还受多种其它相同和不同调节因子的影响,也反映了鲤鱼GtH和GH分泌的神经内分泌调控的复杂性。  相似文献   

8.
An isocratic high-performance liquid chromatographic technique was developed to measure levels of gamma-aminobutyric acid (GABA), glutamate, and taurine in the brain and pituitary of goldfish. Accuracy of this procedure for quantification of these compounds was established by evaluating anesthetic and postmortem effects and by selectively manipulating GABA concentrations by intraperitoneal administration of the glutamic acid decarboxylase (GAD) inhibitor 3-mercaptopropionic acid or the GABA transaminase inhibitor gamma-vinyl GABA. The technique provided a simple, rapid, and reliable method for evaluating the concentrations of these amino acids without the use of complex gradient chromatographic systems. To investigate the relationship between neurotransmitter amino acids and the control of pituitary secretion of gonadotropin, the effects of injection of taurine, GABA, or monosodium glutamate on GABA, glutamate, taurine, and, in some instances, monoamine concentrations in the brain and pituitary were evaluated and related to serum gonadotropin levels. Injection of taurine caused an elevation in serum gonadotropin concentrations. In addition, injection of the taurine precursor hypotaurine but not the taurine catabolite isethionic acid elevated serum gonadotropin levels. Intracerebroventricular injection of either GABA or taurine also elevated serum gonadotropin concentrations. Pretreatment of recrudescent fish with alpha-methyl-p-tyrosine reduced pituitary dopamine concentrations and also potentiated the serum gonadotropin response to taurine. Injection of monosodium glutamate caused an increase of glutamate content in the pituitary at 24 h; this was followed by a decrease at 72 h after administration. Pituitary GABA, taurine, and dopamine concentrations underwent a transient depletion after monosodium glutamate administration, and this was associated with an elevation of serum gonadotropin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of dopamine on the release of thyrotropin-releasing hormone (TRH) from the rat retina in vitro were studied. The rat retina was incubated in the medium 199 (pH 7.4) with 1.0 mg/ml of bacitracin and 100 micrograms/ml of ascorbic acid. The amount of TRH release into the medium was measured by radioimmunoassay. The TRH release from the rat retina was inhibited significantly in a dose-related manner with the addition of dopamine, but not with pimozide. The inhibitory effects of dopamine on TRH release from the rat retina were blocked with an addition of pimozide to the medium. The elution profile of methanol-extracted rat retina on sephadex G-10 was identical to that of synthetic TRH. From these findings it is concluded that the dopaminergic system inhibits TRH release from the rat retina in vitro.  相似文献   

10.
The aim of the present study was to investigate, using microdialysis, the effects of aging on the glutamate/dopamine/GABA interaction in striatum and nucleus accumbens of the awake rat. For that, the effects of an increase of the endogenous concentration of glutamate on the extracellular concentration of dopamine and GABA in striatum and nucleus accumbens of young (2-4 months), middle-aged (12-14 months), aged (27-33 months), and very aged (37 months) male Wistar rats were studied. Endogenous extracellular glutamate was selectively increased by perfusing the glutamate uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) through the microdialysis probe. In young rats, PDC (1, 2, and 4 mM) produced a dose-related increase of dialysate concentrations of glutamate in both striatum and nucleus accumbens. PDC also increased dialysate dopamine and GABA in both structures. These increases were significantly correlated with the increases of glutamate but not with the PDC dose used, which strongly suggests that the increases of dopamine and GABA were produced by glutamate. In striatum, there were no significant differences in the dopamine/glutamate and GABA/glutamate correlations between young and aged rats. This means that the effects of glutamate on dopamine and GABA do not change during aging. On the contrary, in the nucleus accumbens of aged rats, the increases of dopamine, when correlated with the increases of glutamate, were significantly lower than in young rats. Moreover, the ratio of dopamine to glutamate increases at maximal increases of glutamate was negatively correlated with aging. On the contrary, the ratio of GABA to glutamate increases in nucleus accumbens was positively correlated with aging, which suggests that the effects of endogenous glutamate on GABA tend to be higher in the nucleus accumbens of aged rats. The findings of this study suggest that aging changes the interaction between endogenous glutamate, dopamine, and GABA in nucleus accumbens, but not in striatum, of the awake rat.  相似文献   

11.
Both glutamate and gamma-aminobutyric acid (GABA) are involved in pituitary hormone release in fish. Glutamate serves 2 purposes, both as a neurotransmitter and as a precursor for GABA synthesis. Glutamate can be catabolized to GABA by the actions of 2 distinct but related enzymes, glutamate decarboxylase 65 (GAD65) and GAD67. They derive from 2 different genes that likely arose from an early gene duplication prior to the emergence of teleosts more than 400 million years ago. There is good evidence for the involvement of GABA in luteinizing hormone (LH) release in fish. The mechanism of GABA action to stimulate LH release appears to be a combination of effects on GnRH release, potentiation of gonadotropin hormone-releasing hormone (GnRH) action, and in some cases directly at the LH cell. These actions appear to be dependent on such factors as sex or sex steroid levels, and there may also be species differences. Nevertheless, the stimulatory effects of GABA on LH are present in at least 4 fish species. In contrast, convincing data for the inhibitory effects of GABA on LH release have only been observed in 1 fish species. The sites and mechanisms of action of amino acid neurotransmitters on LH release have yet to be fully characterized. Both 130N-methyl-D-aspartic acid (NMDA) and S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors are likely to have important roles. We suggest that it is a receptor similar to the GABA(A) type which mediates the effects of GABA on LH release in fish, at least partially acting on the GnRH neuron, but likely directly acting at the gonadotroph as well. GABA may also be involved in regulating the release of other pituitary hormones in fish, namely follicle stimulating hormone (FSH = GTH-I), prolactin, and growth hormone. Based on the findings described in this review, a working model for the involvement of glutamate and GABA in the regulation of LH release in teleost fish is proposed.  相似文献   

12.
All non-mammalian vertebrates as well as marsupial mammals have two or more forms of gonadotropin-releasing hormone (GnRH) in the brain. Goldfish brain and pituitary contains two molecular forms of GnRH, salmon GnRH ([Trp7, Leu8]m-GnRH; s-GnRH) and chicken GnRH-II ([His5, Trp7, Tyr8]m-GnRH; cII-GnRH). Both sGnRH and cII-GnRH stimulate gonadotropin (GtH) as well as growth hormone (GH) release from the goldfish pituitary. The purpose of the present study was to study the activity of the five known forms of GnRHs as well as analogs of mammalian GnRH (m-GnRH) with variant amino acid residues in positions 5, 7 and 8 in terms of binding to GnRH receptors, and release of GTH and GH from the perifused fragments of goldfish pituitary in vitro. All five vertebrate GnRH peptides stimulated both GtH and GH release in a dose-dependent manner, although their potencies were very different. cII-GnRH was somewhat more active than s-GnRH in releasing GtH, whereas s-GnRH tended to have a greater potency than cII-GnRH in terms of GH release. Both chicken GnRH-I (cI-GnRH) and lamprey GnRH (l-GnRH) were significantly less potent than mGnRH, s-GnRH and cII-GnRH in releasing GtH and GH. cII-GnRH binds with higher affinity for the high affinity binding sites compared to all other native peptides. The activity of [Trp7]-GnRH was similar to both s-GnRH and cII-GnRH in releasing GtH and GH. Substitution of His5 resulted in a significant decrease in GtH releasing potencies compared to mGnRH, sGnRH and cII-GnRH. [His5]-GnRH also had lower GH releasing potency than mGnRH and sGnRH. Tyr8, His8 and Leu8 substitutions caused significant decreases in GtH releasing potencies compared to mGnRH, s-GnRH and cII-GnRH, but did not cause a significant change in GH releasing potency. The combination of [His5, Trp7]-GnRH had GtH and GH releasing activities similar to m-GnRH, s-GnRH and cII-GnRH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The gamma-aminobutyric acid (GABA) antagonists bicuculline and picrotoxin stimulate a four- to fivefold increase in endogenous dopamine release from isolated intact carp retina. The release evoked by these agents is Ca2+ dependent, a finding suggesting a vesicular release. Using light microscopic autoradiography, we have localized the sites of dopamine release to the dopaminergic interplexiform cell processes of the outer plexiform layer, which synapse onto horizontal cells. Our findings support previous suggestions that the dopaminergic interplexiform cells receive GABAergic inhibitory input and that the effects of GABA antagonists on horizontal cells are mediated by dopamine release from the interplexiform cells.  相似文献   

14.
The effects of dopamine on the release of thyrotropin-releasing hormone (TRH) from the rat adrenal gland were studied in vitro. The rat adrenal glands were incubated in medium 199 with 1.0 mg/ml of bacitracin and 100 micrograms/ml of ascorbic acid (pH 7.4) (medium) for 20 min. The amount of TRH release into the medium was measured by radioimmunoassay. The immunoreactive TRH (ir-TRH) release from the rat adrenal gland was inhibited significantly in a dose-related manner with the addition of dopamine and enhanced with the addition of pimozide or domperidone to the medium. Dopamine's effects on ir-TRH release from the adrenal gland were blocked with the addition of pimozide or domperidone. The elution profile of methanol-extracted rat adrenal gland was identical to that of synthetic TRH. The findings suggest that the dopaminergic system inhibits TRH release from the rat adrenal gland.  相似文献   

15.
To test the hypothesis that a transient increase in prolactin (PRL) secretion prior to puberty can result in an alteration of the adult prostate, male rats were exposed from postnatal Days (PND) 22 to 32 to compounds that increase PRL secretion. These compounds included pimozide (a dopamine antagonist), estradiol-17beta, and bisphenol A (a monomer of polycarbonate plastics reported to have weak estrogenic activity). During dosing, pimozide (PIM), bisphenol A (BPA), and estradiol-17beta (E(2)) stimulated an increased secretion of PRL. At 120 days of age, the lateral prostate weight was increased in the PIM and BPA groups as compared to the vehicle-injected controls. Examination of the prostates revealed inflammation in the lateral lobes of all treated groups. Results of a myeloperoxidase assay, a quantitative assay to assess acute inflammation, indicated an increase in the percentage of males with neutrophil infiltrate in the lateral prostates of the PIM and E(2) treatment groups compared to their respective controls. The histological evaluations of these tissues confirmed an increase in luminal polymorphonuclear cells and interstitial mononuclear cells of the lateral prostates in all treatment groups. Administration of the dopamine agonist, bromocriptine, to the estradiol-implanted males from PND 22 to 32 reversed the induction of lateral prostate inflammation by estradiol, suggesting that PRL was necessary for the inflammatory effect. This study demonstrates that prepubertal exposures to compounds that increase PRL secretion, albeit through different mechanisms, can increase the incidence of lateral prostate inflammation in the adult.  相似文献   

16.
The role of dopaminergic agents in prolactin (Prl) release and the luteotrophic role of Prl and luteinizing hormone (LH) were investigated in pseudopregnant female ferrets. A single injection of the dopamine antagonist pimozide (0.63 mg/kg) resulted in a tenfold elevation of plasma Prl in anestrous females. Subcutaneous injection of pimozide on alternate days from Day 2 through Day 16 of pseudopregnancy elevated both Prl and progesterone levels. Daily treatment with the dopamine agonist 2 alpha-bromoergocryptine (bromocriptine, 4 mg/kg), from Day 2 through Day 16 of pseudopregnancy lowered levels of both plasma Prl and progesterone. Neither pimozide nor bromocriptine had a direct effect on progesterone secretion by luteal cells in vitro. Daily intraperitoneal administration of a monoclonal antibody against gonadotropin-releasing hormone from Day 2 through Day 10 of pseudopregnancy lowered both plasma LH and progesterone, but had no effect on plasma Prl concentrations. Daily administration of equine antisera against bovine LH or 100 IU of human chorionic gonadotrophin to pseudopregnant ferrets lowered progesterone levels. It is concluded that Prl release is influenced by dopaminergic compounds, and both Prl and LH are required for luteal maintenance in the ferret.  相似文献   

17.
To examine the role of the GABA(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the ventromedial-infundibular region (VEN/IN) of anestrous ewes, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenylglycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during local stimulation or blockade of GABA(A) receptors with muscimol or bicuculline respectively. In most animals stimulation of GABA(A) receptors significantly attenuates GnRH release with concomitant increase of beta-endorphin and DA release, and MHPG and DOPAC levels. Blockade of the GABA(A) receptors generally did not affect GnRH and NE release but inhibited in most animals beta-endorphin release and decreased dopaminergic activity. These results suggest, that GABA may suppress GnRH release directly by GABA(A) receptor mechanism on the axon terminal of GnRH neurons or indirectly by GABA(A) receptor processes activating beta-endorphin-ergic and dopaminergic neurons in the VEN/NI. On the basis of these results in could not be distinguish between these two events. The decrease in extracellular beta-endorphin and dopamine concentration without evident changes in the GnRH level during GABA(A) receptor blockade may suggest that other neuronal systems are involved in this effect.  相似文献   

18.
Abstract: A push-pull cannula technique was used to study the in vivo release of endogenous GABA in the rat substantia nigra. Intranigral application of both dopamine (DA) and apomorphine produced biphasic changes in the rate of endogenous GABA release. The presence of 10 μM-DA in the perfusion medium increased GABA release (140%). At 25 μM-DA, both stimulation and inhibition of the nigral GABA release were observed. Higher concentrations of DA produced a decrease of the GABA release (50%). A small amount of apomorphine (10 μM in the perfusion medium) resulted in a decrease in GABA release (75%). Application of 25 μM-apomorphine produces opposite effects, similar to those observed after addition of 25 μM-DA. We observed an enhanced GABA release from the substantia nigra at 100 μM-apomorphine in the perfusion medium (360%). The presence of 5 μM-haloperidol produced a small decrease in the rate of GABA release (80%). Both the inhibitory effect of 25 μM-DA and the excitatory effect of 100 μM-apomorphine could be blocked by haloperidol added to the perfusion medium. Dibutyryl cyclic AMP (1.5 mM) and 2-amino-6, 7-dihydroxyl(1, 2, 3, 4) tetrahydronapthalene (ADTN) (50 μM) added to the perfusion medium produced an inhibition of nigral GABA release (55% and 35% respectively) similar to that observed after addition of 50 μM-DA. The amounts of lysine and ethanolamine (measured with GABA concurrently) released into the perfusion medium did not change in most of the experiments. The changes in the rates of release of these compounds that were observed in some experiments were either in the same or in the opposite direction of the change in GABA release. These results suggest that dopaminergic processes within the substantia nigra affect GABA-ergic neurotransmission and that DA and apomorphine have different effects on GABA release.  相似文献   

19.
Collagenase-dispersed carp pituitary cells in a perifusion system were used to study the role of calcium ions in the mechanism of GnRH action on the release of maturational gonadotropin (GtH) in fish. The specific calcium chelator EGTA and the calcium antagonist manganese (Mn2+) caused a 40% inhibition in the basal GtH release and completely blocked GnRH-stimulated GtH release. Short-term application of graded doses of calcium ionophore A23187 caused a dose-dependent increase in GtH secretion. A23187 failed to stimulate GtH secretion in the presence of EGTA. Depolarization of the membrane by K+ caused a strong stimulation of GtH release similar to the action of GnRH. Stimulatory action of K+ was inhibited by EGTA. These data suggest a role for extracellular calcium as an intracellular mediator in GnRH-stimulated, as well as in basal, GtH release in carp. The stimulation of GtH release by K+ also indicates that voltage-dependent processes could be involved in this phenomenon.  相似文献   

20.
To examine the role of gamma-aminobutyric acid (GABA)(A) receptor mediating systems in the control of gonadotropin-releasing hormone (GnRH) release from the medial preoptic area (MPOA) of ewes during the follicular phase of the estrous cycle, the extracellular concentrations of GnRH, beta-endorphin, noradrenaline (NE), dopamine (DA), 4-hydroxy-3-methoxy-phenyl-glycol (MHPG) and 3,4-dihydroxy-phenylacetic acid (DOPAC) were quantified during the local infusion of muscimol and bicuculline (agonist and antagonist of GABA(A) receptors, respectively) to this structure. Stimulation of GABA(A) receptors markedly attenuated GnRH release, increased beta-endorphin release and noradrenergic system activity in the MPOA. The decrease of the luteinizing hormone (LH) concentration in blood plasma and LH pulse amplitude suggests that a GABA(A) receptor agonist in the MPOA also suppresses GnRH release from the GnRH axon terminals in the ventromedial hypothalamus/nucleus infundibularis region (VEN/NI). Blockade of GABA(A) receptors had no evident effect on GnRH/LH secretion but decreased beta-endorphin release and increased the extracellular DOPAC concentration. The suppressive influence of muscimol in the MPOA on GnRH release might be considered a net result of its direct inhibitory effect on GnRH release, indirect inhibitory influence on GnRH release through activation of the beta-endorphinergic system, and facilitation of GnRH neurons by increasing noradrenaline release. The results obtained during bicuculline perfusion on these systems' activity are not sufficiently consistent to provide a clear understanding of the lack of changes in the GnRH/LH release under blockade of GABA(A) receptors. We conclude that the MPOA in ewes during the follicular phase is an important regulatory site where stimulation of GABA(A) receptors both decreases GnRH secretion and increases beta-endorphin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号