首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most studies aiming to determine the beneficial effect of ants on plants simply consider the effects of the presence or exclusion of ants on plant yield. This approach is often inadequate, however, as ants interact with both non-tended herbivores and tended Homoptera. Moreover, the interaction with these groups of organisms is dependent on ant density, and these functional relationships are likely to be non-linear. A model is presented here that segregates plant herbivores into two categories depending on the sign of their numerical response to ants (myrmecophiles increase with ants, non-tended herbivores decline). The changes in these two components of herbivores with increasing ant density and the resulting implications for ant-plant mutualisms are considered. It emerges that a wide range of ant densities needs to be considered as the interaction sign (mutualism or parasitism) and strength is likely to change with ant density. The model is used to interpret the results of an experimental study that varied levels of Aphis fabae infestation and Lasius niger ant attendance on Vicia faba bean plants. Increasing ant density consistently reduced plant fitness and thus, in this location, the interaction between the ants and the plant can be considered parasitic. In the Vicia faba system, these costs of ants are unlikely to be offset by other beneficial agents (e.g., parasitoids), which also visit extrafloral nectaries.  相似文献   

2.
The relative influence of the southern fire ant, Solenopsis xyloni McCook, Argentine ant, Linepithema humile (Mayr), and native gray ant, Formica aerata (Francoeur), on parasitism of California red scale, Aonidiella aurantii Maskell, was studied in the laboratory for two parasitoids, Comperiella bifasciata Howard and Aphytis melinus DeBach. All three ant species reduced percentage parasitism by C. bifasciata and both percentage parasitism and host mutilation by A. melinus. Southern fire ant was the least disruptive and native gray ant the most disruptive. Southern fire ant removed 12% of scale from the lemons, presumably to feed on them, while the other ant species did not exhibit significant removal of scale compared to the controls. Percentage parasitism of California red scale exhibited by C. bifasciata was more than 2-fold the level exhibited by A. melinus. Percentage mutilation of California red scale, including probing and host feeding, was nearly 5-fold higher for A. melinus than C. bifasciata. Because A. melinus required a longer total host examination + oviposition period in the absence of ants than C. bifasciata and because oviposition occurs as the last act in a sequence of behaviors, disruption by the ants had a more significant negative effect on oviposition by A. melinus.  相似文献   

3.
Summary Larvae and pupae of lycaenid butteflies are often associated with ants: this is usually a mutualism in which ants guard the lycaenids from natural enemies, and the lycaenid larvae and pupae provide sugars and amino acids for the ants. A possible consequence of the interaction is spatially correlated ant and lycaenid distributions, but the phenomenon is poorly documented. We examined the lycaenid Plebejus argus, which is tended by Lasius ants. Within habitat patches, P. argus eggs, larvae and pupae were all spatially associated with Lasius. On a larger scale, the densities of butterflies in different habitat patches and populations, and whether the butterfly was present or not, were correlated with Lasius ant densities. The association of P. argus with Lasius ants is consistent among populations, and occurs at several spatial scales. Other aspects of the ecology of P. argus are more variable.  相似文献   

4.
  • 1 Ants can have a range of effects on arthropods in crops, including suppressing herbivores such as caterpillars. However, ants can also increase hemipteran densities while reducing natural enemy numbers. In vineyard ecosystem, the effects of native ants and their interactions with other arthropods are poorly understood.
  • 2 An ant‐exclusion experiment was designed to test the impact of native ants on both canopy and ground arthropods concurrently. The potential influence of ants on predation and parasitism of light brown apple moth (LBAM) eggs, a grape pest, was also examined. Adult grapevine scale insects and earwigs under bark were counted after a season of ant‐exclusion.
  • 3 Among 23 ground ant species collected, six were found to forage in the canopy, with two Iridomyrmex species being the most commonly encountered.
  • 4 There was no difference in the abundance of most arthropod orders and feeding groups between ant‐excluded and control vines, although ground spiders were more abundant under ant‐excluded vines, despite increased ground ant foraging pressure. LBAM egg parasitism and predation were low and probably affected by weather and other arthropods. Ant exclusion did not reduce survival of scale insects, although the distribution and abundance of scale insects were negatively associated with earwigs.
  • 5 In conclusion, native ants did not consistently suppress arthropod assemblages, including natural enemies, and they did not promote the survival of scale insects. Interactions among native ant species within a vineyard might minimize their effects on other arthropods, although this needs further study.
  相似文献   

5.
The banana weevil, Cosmopolites sordidus (Germar), is an important pest of bananas. Predatory ants are increasingly being viewed as possible biological control agents of this pest because they are capable of entering banana plants and soil in search of prey. We studied ant predation on banana weevil in Uganda in crop residues and live plants in both laboratory and field experiments. Field studies with live plants used chemical ant exclusion in some plots and ant enhancement via colony transfer in others to measure effects of Pheidole sp. 2 and Odontomachus troglodytes Santschi on plant damage and densities of immature banana weevils.In crop residues, an important pest breeding site, twice as many larvae were removed from ant-enhanced plots as in control plots. In young (2 month) potted suckers held in shade houses, ant ability to reduce densities of banana weevil life stages varied with the weevil inoculation rate. At the lowest density (2 female weevils per pot), densities of eggs, larvae, and pupae were reduced by ants. At higher rates there was no effect. In older suckers (5–11 months) grown in larger containers, banana weevil densities were not affected by ants, but damage levels were reduced. In a field trial lasting a full crop cycle (30 months), we found that the ants tested reduced the density of banana weevil eggs in suckers during the crop, but did not affect larval densities in the sampled suckers. However, most larvae occur in the main banana plants, rather than associated suckers. Nevertheless, levels of damage in mature plants at harvest did not differ between Amdro-treated and ant-enhanced plots, suggesting the ant species studied were not able to provide economic control of banana weevil under our test conditions.  相似文献   

6.
We documented patterns of seasonal abundance and rates of parasitism in introduced populations of Pseudacteon tricuspis Borgmeier, a phorid parasitoid of the red imported fire ant, Solenopsis invicta Buren. Adult P. tricuspis populations were censused at monthly intervals for 1 year at three sites in northern Florida. Censuses were conducted by aspirating phorids attracted to disturbed S. invicta mounds. Pseudacteon tricuspis adults were present in every month at all sites, although abundances varied greatly among sites and over time. The highest densities of flies (up to 453 censused at 10 disturbed S. invicta mounds in 30 min) were observed in November, and changes in abundance over time were positively correlated among sites. Sex ratios were usually male biased. Parasitism rates were evaluated by collecting workers from field colonies and monitoring them in the laboratory for evidence of parasitism. Parasitism rates were very low – always less than 1%. The average parasitism rate per colony over 16 colonies and 2 years was 0.058%. No pupariation occurred within the first 8 days of collection, suggesting parasitism by P. tricuspis induced behavioral changes in parasitized workers that precluded such workers from our collections. If so, true field parasitism rates may be several times higher than measured here, yet still low in an absolute sense. These low parasitism rates can be reconciled with observed adult phorid densities by considering the large number of host ants present at the study sites.  相似文献   

7.
The visible anal spots deposited by Oecophylla smaragdina ants have been suggested to deter ant prey, affect interspecific competition and facilitate mutualists and parasites in tracking down Oecophylla ants. I measured the density of anal spots on host trees with and without ants and tested for correlations between spot density, ant activity and the likelihood of being detected by an ant. Spots were only found on trees with ants. On ant-trees, spots were distributed throughout the trees but with higher densities in areas with high ant activity and pheromone densities were higher on twigs compared to leaves. Also there was a positive correlation between spot density and the likelihood of being detected by ants. Anal spots may thus function as reliable cues to interacting species and be an important factor in shaping the community around Oecophylla colonies. Received 31 August 2006; revised 27 April 2007; accepted 2 May 2007.  相似文献   

8.
Survival rates of both early and middle instar larvae of the nymphalid butterfly, Sasakia charonda, were estimated to be lowest on test trees planted in a meadow (site A), intermediate in a small, narrow secondary deciduous broadleaf forest (small patch, site B) and highest in a large secondary deciduous broadleaf forest (large forest, site C). The larval mortality rates due to predation by tree-climbing predators from the ground (tree climbing predator) such as ants and the larvae of carabids were estimated to be greater at sites A and B than those at site C. The number of predatory ants climbing test trees was significantly greater at sites A and B than at site C, and the ants harvested honeydew from aphids living on tree leaves at those two sites. Aphid densities were significantly higher on trees at sites A and B than at site C, and aphid densities and numbers of predatory ants were significantly and positively correlated at sites A and B. In an experiment controlling aphid density per branch on test trees, the numbers of ants and the mortality rates of S. charonda larvae were greater on branches with high aphid densities than on those with low aphid densities at both sites A and B. These results suggest that the aphid density per host tree was higher in the meadow and the small patch than in the large forest; at both sites these higher aphid densities attracted higher numbers of predatory ants to test trees, and as a result, mortality rates of S. charonda larvae were increased.  相似文献   

9.
Butterflies of the highly endangered genus Maculinea are parasites of red Myrmica ants. Prior to the adoption by Myrmica worker ants Maculinea caterpillars feed on a specific host plant. This field study aims to answer the question whether the density and distribution of the host plant Sanguisorba officinalis or the density of the host ant M. rubra limit the density of M. nausithous egg, larval and adult stage. We found that the density of M. nausithous egg stage and adult stage increased with the density of the host ant. The density of M. nausithous caterpillars was not associated with ant density or plant density. This study suggests that the density of M. nausithous is limited by the density of the host ant M. rubra. We conclude that habitat management for M. nausithous should focus on the maintenance of habitats that hold both resources, but that enable high densities of M. rubra. In addition, it is discussed why high densities of host ants might be more important in predatory than in cuckoo-feeding Maculinea.  相似文献   

10.
The foraging behaviour of the parasitoid wasp Neotypus melanocephalus and factors affecting parasitism at the population level were studied. This specialised parasitoid attacks caterpillars of the butterfly Maculinea nausithous, which sequentially feed on the plant Sanguisorba officinalis and specific red Myrmica ants. Among M. nausithous populations, there is considerable variation in caterpillar densities. At low M. nausithous densities, foraging might be time consuming for N. melanocephalus. High host densities may not always be advantageous to foraging parasitoids due to the caterpillars’ frequent overexploitation of ant resources and subsequent density-dependent mortality. In order to disperse progeny, we hypothesised that N. melanocephalus should search in a non-random way at the level of the micro-habitat, i.e., single flower heads of S. officinalis. Our analysis of 32 natural populations in the Upper Rhine valley in Germany did not show a density-dependent relationship between M. nausithous caterpillars and parasitism. Furthermore, habitat parameters like patch size and density of the host's food plant did not affect the parasitism rate. Foraging N. melanocephalus females preferred to search on large flower heads. They probed host-occupied flower heads only, visiting non-host-exploited flower heads only briefly. Time spent on a flower head was independent of the number of caterpillars per flower head. This study indicates that N. melanocephalus increases its foraging efficiency by preferring large flower heads that were previously shown to contain more host caterpillars than small flower heads. Furthermore, oviposition increases the likelihood of continuing to search on a flower head, which is an adaptive strategy for parasitoids foraging for aggregated hosts. However, many host-occupied flower heads were not probed by N. melanocephalus. We discuss the possibility that temporal host refuges of M. nausithous caterpillars might contribute to heterogeneity of parasitism, and why spreading offspring might constitute a suitable strategy for a parasitoid of an ant-parasitic butterfly.  相似文献   

11.
The crazy ant (Anoplolepis gracilipes) invaded Bird island, Seychelles, in the 1980s. In 1997, its range expanded and population densities increased. The impacts of this change were studied in 2001 using a combination of arthropod collecting methods. The ant population excluded larger invertebrates (principally the large ant Odontomachus simillimus and the crabs, principally Ocypode spp.). Cockroaches, however, remained abundant in ant-infested areas and tree-nesting birds (Lesser Noddy Anous tenuirostris) appear to be able to breed successfully in the presence of the crazy ant. The ants are only abundant in areas of deep shade which provide cool nesting areas, yet enabling them to forage in the open when ground temperatures fall. The expansion of the ants was correlated with the regeneration of woodland on the island. Recommendations are made for the management of the woodland which may reduce the impacts of the crazy ant.  相似文献   

12.
The introduced yellow crazy ant or long-legged ant Anoplolepis gracilipes was first reported in Seychelles in 1969 and now occurs on at least nine islands in the Central Seychelles. We describe the yellow crazy ant's effects on vegetation and invertebrate communities on one of these, Bird Island; in 2000, Anoplolepis (first reported in 1991) occurred there at densities at least 80 times higher than on other islands in the Central Seychelles. They were associated with high densities of coccid scale insects on foliage, especially of the native tree Pisonia grandis, in some instances causing tree death. Yellow crazy ants on Bird Island also significantly affected invertebrate communities on foliage and on the ground, both in terms of taxonomic composition and the density of specific taxa, apparently causing the local exclusion of some invertebrates.  相似文献   

13.
Abstract 1. The Argentine ant, Linepithema humile, tends honeydew‐excreting homopterans and can disrupt the activity of their natural enemies. This mutualism is often cited for increases in homopteran densities; however, the ant’s impact on natural enemies may be only one of several effects of ant tending that alters insect densities. To test for the variable impacts of ants, mealybug and natural enemy densities were monitored on ant‐tended and ant‐excluded vines in two California vineyard regions. 2. Ant tending increased densities of the obscure mealybug, Pseudococcus viburni, and lowered densities of its encyrtid parasitoids Pseudaphycus flavidulus and Leptomastix epona. Differences in parasitoid recovery rates suggest that P. flavidulus was better able to forage on ant‐tended vines than L. epona. 3. Densities of a coccinellid predator, Cryptolaemus montrouzieri, were higher on ant‐tended vines, where there were more mealybugs. Together with behavioural observations, the results showed that this predator can forage in patches of ant‐tended mealybugs, and that it effectively mimics mealybugs to avoid disturbance by ants. 4. Ant tending increased densities of the grape mealybug, Pseudococcus maritimus, by increasing the number of surviving first‐instar mealybugs. Parasitoids were nearly absent from the vineyard infested with P. maritimus. Therefore, ants improved either mealybug habitat or fitness. 5. There was no difference in mealybug distribution or seasonal development patterns on ant‐tended and ant‐excluded vines, indicating that ants did not move mealybugs to better feeding locations or create a spatial refuge from natural enemies. 6. Results showed that while Argentine ants were clearly associated with increased mealybug densities, it is not a simple matter of disrupting natural enemies. Instead, ant tending includes benefits independent of the effect on natural enemies. Moreover, the effects on different natural enemy species varied, as some species thrive in the presence of ants.  相似文献   

14.
D. Jordano  C. D. Thomas 《Oecologia》1992,91(3):431-438
Summary Many lycaenid butterflies are believed to be mutualists of ants — the butterfly larvae secrete sugars and amino acids as rewards for the ants, and the ants protect the larvae from predation or parasitism. We examined the specificity of the relationship between the lycaenid Plebejus argus and ants in the genus Lasius. Eggs were not attractive to Lasius ants until the emerging larvae had broken through the chorion. First instar larvae were palpated and picked up by Lasius workers and taken to the nest. First instars were mostly ignored by Myrmica sabuleti ants and they were rarely detected by Formica fusca. Older larvae were more attractive to Lasius than to the other ant genera. Pupae were very attractive to Lasius, moderately so to Myrmica, and were ignored by Formica fusca. Teneral adults were palpated by Lasius, but were attacked by Myrmica and Formica workers. We conclude that P. argus is a specialist associate of Lasius ants. Two populations of Plebejus argus were compared: one is naturally associated with Lasius niger, and the other with Lasius alienus. In reciprocal trials, larvae were slightly more attractive to their natural host ant species. Since test larvae were reared on a single host plant species in captivity, this differentiation probably has a genetic basis.  相似文献   

15.
Iyer  Nandini  Ramakrishna Rao  T. 《Hydrobiologia》1993,255(1):325-332
Using population densities and growth rates as criteria, we studied interactions between the epizoic rotifer Brachionus rubens and each of three cladoceran species differing in size and reproductive rates — Daphnia carinata, Moina macrocopa and Ceriodaphnia rigaudi. In all mixed — species experiments, B. rubens existed in both the epizoic mode, attached to the cladoceran host, and in the free-swimming mode. Rotifer population growth rates were significantly depressed in the presence of M. macrocopa, presumably as a consequence of exploitative and interference competition. The largest cladoceran, D. carinata probably did not suppress B. rubens, because the epizoic component of the rotifer population escaped from the deleterious effects of mechanical interference. Peak population numbers and initial population growth rates reached by all three cladocerans were lower in the presence of B. rubens, probably because of the adverse effects of the epizoic infestation, which was maximal on D. carinata and least on C. rigaudi. In mixed-species cultures of D. carinata and M. macrocopa, the presence of B. rubens helped D. carinata coexist with M. macrocopa, which otherwise would have suppressed the Daphnia.  相似文献   

16.
Following the successful introduction ofEpidinocarsis lopezi (De Santis) for biological control of the cassava mealybug (CM)Phenacoccus manihoti Mat.-Ferr. in southwestern Nigeria in 1981 and 1982, 11 groups of cassava fields were sampled every 2 weeks up to 1988 for impact assessment. After 1984, CM populations remained mostly below 10 per tip despite the presence of native hyperparasitoids, demonstrating the long-term success of biological control byE. lopezi in the region. Indigenous polyphagous coccinellids were found only during peak host densities, whereas the specificE. lopezi was common throughout the year. During some periods, percentage parasitism indicated delayed density dependence. Since 89% of all sampled cassava tips had no CM at all and the parasitisme is very mobile, parasitization rates were also calculated for individual infested tips (N=4,878). Parasitism increased slightly with host density on tips having between 1 and 10 CM of the 3rd and 4th instars, indicating positive density dependence. Such tips comprised 64% of all infested tips. At higher host densities, parasitism rates fell rapidly. The results are discussed in view of different theories on population regulation by biological control agents.   相似文献   

17.
1. Ants have evolved mutualistic relationships with a diverse array of plant and animal species. Usually, the predatory/aggressive behaviour of ants near food sources can limit herbivore damage. 2. Galls of Disholcaspis edura on Quercus turbinella produce a secretion that is harvested by three species of ants (Formica neorufibarbis, Liometopium apiculatum, and Monomorium cyaneum) in the chaparral vegetation of Arizona, U.S.A. The study reported here provides evidence of a mutualistic relationship between these species of ants and the gall-forming wasp Disholcaspis edura. 3. An ant exclusion experiment showed that when ants tended galls, the rate of parasitism by Platygaster sp. on Disholcaspis edura was nearly halved in comparison to a treatment in which ants were excluded. 4. In the presence of ants, galls with the largest diameter suffered a lower mortality rate due to parasitoid attack than when ants were excluded. Thus, ant presence reduced the selective pressure imposed by Platygaster sp. on the galls with larger diameter.  相似文献   

18.
Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.  相似文献   

19.
Summary. Ants have the capacity to reach unusually high densities, mostly in their introduced ranges. Numerical dominance is often cited as key to the ability of exotic ants to displace native ant species, reduce the abundance of invertebrates and negatively impact upon bird, land crab and other vertebrate populations. On Christmas Island, Indian Ocean, the yellow crazy ant, Anoplolepis gracilipes (Jerdon), forms supercolonies, where extremely high densities of foraging ants have contributed to ‘invasional meltdown’ in rainforest areas. Densities of up to 2254 foraging ants per m2 and a biomass of 1.85 g per m2 were recorded, and nest densities reached 10.5 nest entrances per m2. Populations of A. gracilipes can overcome and kill red endemic land crabs (Gecarcoidea natalis) over 100 times their own biomass. This is the highest recorded density of foraging ants, and adds another element to the definition of ‘supercolony’ of unicolonial ants. This paper documents one extreme in a continuum of densities of unicolonial, invasive ant species and highlights the need to incorporate forager densities into invasive ant research.Received 17 November 2004; revised 14 February 2005, accepted 21 February 2005.  相似文献   

20.
Iyer  Nandini  Ramakrishna Rao  T. 《Hydrobiologia》1995,313(1):377-380
The planktonic rotifer Brachionus rubens has a propensity for an epizoic mode of life, and in nature is often found attached to cladocerans. In this way the rotifer avoids to a certain extent the adverse effects of interference competition with cladocerans. We test the hypothesis that the epizoic habit of B. rubens acts also as a deterrent against invertebrate predation. Using Asplanchna intermedia as predator, we followed the population growth patterns of B. rubens alone and in the presence of the host species Daphnia carinata and Ceriodaphnia rigaudi. In the absence of cladocerans, the prey was eliminated within three days, followed by extinction of the predator due to starvation. With D. carinata in the medium, the prey-predator system persisted much longer, with B. rubens reaching high population densities. With the smaller-sized C. rigaudi, allowing a significantly smaller fraction of B. rubens population to be epizoic, the system persisted longer than in the controls, but both the prey and predator eventually became extinct. We conclude that the epizoic habit of B. rubens, by acting as a prey refugium, helps a portion of the population to escape from predation, and facilitates its coexistence with Asplanchna intermedia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号