首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In the yeast Kluyveromyces lactis, mutations affecting mitochondrial functions are often highly unstable. In order to understand the basis of this genetic instability, we examined the case of an oligomycin resistant mutant. When the mutant was grown in the absence of the drug, the resistance was rapidly lost. This character showed a typical cytoplasmic inheritance. The unstable resistance was found to be associated with the presence of a repetitive DNA in which the repeating unit was a specific segment of the mitochondrial DNA. The amplified molecules were co-replicating with the wild type genome in the mutant cells. The spontaneous loss of the drug resistance was accompanied by the disappearance of the amplified DNA. The repetitive sequence came from a 405 base-pair segment immediately downstream of a cluster of two transfer RNA genes (threonyl 2 and glutamyl). Modified processing of these tRNAs was detected in the mutant. A possible mechanism by which these events could lead to drug resistance is discussed.  相似文献   

5.
6.
7.
We show that individual men are polymorphic for the amount of two different repeated DNA sequences. The amount of one of these sequences is proportional to the length of the brightly fluorescent heterochromatin on the Y chromosome. There are no detectable alterations in sequence between polymorphic individuals. Female DNA contains sequences complementary to those found on the Y, but at a much reduced level.  相似文献   

8.
Large-scale cooperative helix opening has been previously observed in A + T rich sequences contained in supercoiled DNA molecules at elevated temperatures. Since it is well known that helix melting of linear DNA is suppressed by addition of salt, we have investigated the effects of added salts on opening transitions in negatively supercoiled DNA circles. We have found that localised large-scale stable melting in supercoiled DNA is strongly suppressed by modest elevation of salt concentration, in the range 10 to 30 mM sodium. This has been shown in a number of independent ways: 1. The temperature required to promote cruciform extrusion by the pathway that proceeds via the coordinate large-scale opening of an A + T rich region surrounding the inverted repeat (the C-type pathway, first observed in the extrusion of the ColE1 inverted repeat) is elevated by addition of salt. The temperature required for extrusion was increased by about 4 deg for an addition of 10 mM NaCl. 2. A + T rich regions in supercoiled DNA exhibit hyperreactivity towards osmium tetroxide as the temperature is raised; this reactivity is strongly suppressed by the addition of salt. At low salt concentrations of added NaCl (10 mM) we observe that there is an approximate equivalence between reducing the salt concentration, and the elevation of temperature. Above 30 mM NaCl the reactivity of the ColE1 sequences is completely supressed at normal temperatures. 3. Stable helix opening transitions in A + T rich sequences may be observed with elevated temperature, using two-dimensional gel electrophoresis; these transitions become progressively harder to demonstrate with the addition of salt. With the addition of low concentrations of salt, the onset of opening transitions shifts to higher superhelix density, and by 30 mM NaCl or more, no transitions are visible up to a temperature of 50 degrees C. Statistical mechanical simulation of the data indicate that the cooperativity free energy for the transition is unaltered by addition of salt, but that the free energy cost for opening each basepair is increased. These results demonstrate that addition of even relatively low concentrations of salt strongly suppress the large-scale helix opening of A + T rich regions, even at high levels of negative supercoiling. While the opening at low salt concentrations may reveal a propensity for such transitions, spontaneous opening is very unlikely under physiological conditions of salt, temperature and superhelicity, and we conclude that proteins will therefore be required to facilitate opening transitions in cellular DNA.  相似文献   

9.
Summary Several clones containing clusters of repetitive elements were isolated from a human chromosome 22 specific library. An EcoRI-XhoI fragment of 860bp was subcloned and was shown to belong to a family of tandemly repeated DNA linked to the Y-specific 3.4 kb HaeIII band. This probe hybridizes to several sets of sequences or subfamilies. The most abundant subfamily is a 1.8kb long sequence containing one EcoRV site, and in most repeats, one AvaII and one KpnI site. Using human-rodent somatic cell hybrid DNA, we have shown that this cluster is present on human chromosome 9 although presence on chromosome 15 is not excluded. Another subfamily, 6.1 kb long, appears to be exclusive of chromosome 16. By in situ hybridization with metaphasic chromosomes, these sets of repeats were mapped to the constitutive heterochromatin of a few chromosomes. Coexistence in one genome of long tandem repeats of distinct organization but similar length may represent the outcome of a continuous process of fixation of variant sequences. Homologous repeats are also abundant in four higher primate genomes (Orangutan, gorilla, chimpanzee, and man) but absent in other primates (African green monkey, rhesus monkey, baboon, and mouse lemur).  相似文献   

10.
Modification by ubiquitin-like proteins is now known to be important for the functions of many proteins involved in DNA replication and repair. We have investigated the modification of human DNA polymerase delta by ubiquitin and SUMO proteins. We find that while the p125 and p50 subunits were not modified, the p12 subunit is ubiquitinated and the p66 subunit can be modified by ubiquitin and SUMO3. We show that levels of p12 are regulated by the proteasome, either directly or indirectly, through a mechanism that is not dependent upon p12 ubiquitination. We have mapped two sites of SUMO3-specific modification on the p66 subunit. SUMOylation by SUMO3 but not SUMO2 is unusual: their level of homology is so high that they are normally classified as variants of the same protein. However, our findings show that these two proteins can be distinguished in vivo and may have specific functions.  相似文献   

11.
The human alpha-fetoprotein gene spans 19,489 base pairs from the putative "Cap" site to the polyadenylation site. It is composed of 15 exons separated by 14 introns, which are symmetrically placed within the three domains of alpha-fetoprotein. In the 5' region, a putative TATAAA box is at position -21, and a variant sequence, CCAAC, of the common CAT box is at -65. Enhancer core sequences GTGGTTTAAAG are found in introns 3 and 4, and several copies of glucocorticoid response sequences AGATACAGTA are found on the template strand of the gene. There are six polymorphic sites within 4690 base pairs of contiguous DNA derived from two allelic alpha-fetoprotein genes. This amounts to a measured polymorphic frequency of 0.13%, or 6.4 X 10(-4)/site, which is about 5-10 times lower than values estimated from studies on polymorphic restriction sites in other regions of the human genome. There are four types of repetitive sequence elements in the introns and flanking regions of the human alpha-fetoprotein gene. At least one of these is apparently a novel structure (designated Xba) and is found as a pair of direct repeats, with one copy in intron 7 and the other in intron 8. It is conceivable that within the last 2 million years the copy in intron 8 gave rise to the repeat in intron 7. Their present location on both sides of exon 8 gives these sequences a potential for disrupting the functional integrity of the gene in the event of an unequal crossover between them. There are three Alu elements, one of which is in intron 4; the others are located in the 3' flanking region. A solitary Kpn repeat is found in intron 3. The Xba and Kpn repeats were only detected by complete sequencing of the introns. Neither X, Xba, nor Kpn elements are present in the related human albumin gene, whereas Alu's are present in different positions. From phylogenetic evidence, it appears that Alu elements were inserted into the alpha-fetoprotein gene at some time postdating the mammalian radiation 85 million years ago.  相似文献   

12.
Ether-à-go-go (EAG) and EAG-related gene (ERG) K(+) channels are close homologues but differ markedly in their gating properties. ERG1 channels are characterized by rapid and extensive C-type inactivation, whereas mammalian EAG1 channels were previously considered noninactivating. Here, we show that human EAG1 channels exhibit an intrinsic voltage-dependent slow inactivation that is markedly enhanced in rate and extent by 1-10 μM 3-nitro-N-(4-phenoxyphenyl) benzamide, or ICA105574 (ICA). This compound was previously reported to have the opposite effect on ERG1 channels, causing an increase in current magnitude by inhibition of C-type inactivation. The voltage dependence of 2 μM ICA-induced inhibition of EAG1 current was half-maximal at -73 mV, 62 mV negative to the half-point for channel activation. This finding suggests that current inhibition by the drug is mediated by enhanced inactivation and not open-channel block, where the voltage half-points for current inhibition and channel activation are predicted to overlap, as we demonstrate for clofilium and astemizole. The mutation Y464A in the S6 segment also induced inactivation of EAG1, with a time course and voltage dependence similar to that caused by 2 μM ICA. Several Markov models were investigated to describe gating effects induced by multiple concentrations of the drug and the Y464A mutation. Models with the smallest fit error required both closed- and open-state inactivation. Unlike typical C-type inactivation, the rate of Y464A- and ICA-induced inactivation was not decreased by external tetraethylammonium or elevated [K(+)](e). EAG1 channel inactivation introduced by Y464A was prevented by additional mutation of a nearby residue located in the S5 segment (F359A) or pore helix (L434A), suggesting a tripartite molecular model where interactions between single residues in S5, S6, and the pore helix modulate inactivation of EAG1 channels.  相似文献   

13.
14.
15.
We have examined the large T encoded by an SV40 mutant, d10, which fails to localize to the nucleus. The DNA sequence of the mutant predicts the alteration of Lys 128----Thr within the sequence 127 Lys Lys Lys Arg Lys 131 of large T. The results show that d10 large T is capable of binding to SV40 DNA, to cellular DNA and to the cellular phosphoprotein p53 as well as wild-type large T. These data suggest that the cytoplasmic location of d10 large T is not due to an inability of the protein to be retained within the nucleus, but argues instead that the protein fails to reach the nucleus because it contains a defective nuclear location signal.  相似文献   

16.
17.
Type IIs endonucleases recognize asymmetric DNA sequences and cleave both strands at fixed positions downstream of the sequence. Many type IIs enzymes, including BspMI, cleave substrates with two sites more rapidly than those with one site. They usually act sequentially on DNA with two sites, but BspMI converted such a substrate directly to the final products cut at both sites. The BspMI endonuclease was found to be a tetramer, in contrast to the monomeric structures for many type IIs enzymes. No change in subunit association occurred during the BspMI reaction. Plasmids with two BspMI sites were cleaved in cis, in reactions spanning sites in the same DNA, even when the sites were separated by just 38 bp. Plasmids with one BspMI site were cleaved in trans, with the enzyme bridging sites in separate DNA molecules: these slow reactions could be accelerated by adding a second DNA with the recognition sequence. Thus, whereas many type IIs enzymes dimerize before cleaving DNA, a process facilitated by two recognition sites in cis, the BspMI tetramer binds two copies of its recognition sequence before cleaving the DNA in both strands at both sites.  相似文献   

18.
Activation of algD by AlgR is essential for mucoidy, a virulence factor expressed by Pseudomonas aeruginosa in cystic fibrosis. Two AlgR-binding sites, RB1 and RB2, located far upstream from the algD mRNA start site, are essential for the high-level activity of algD. However, the removal of RB1 and RB2 does not completely abolish inducibility of algD in response to environmental signals. In this work, a third binding site for AlgR, termed RB3, near the algD mRNA start site was characterized. Deletion of RB3 abrogated both the AlgR-binding ability and the residual inducibility of the algD promoter. DNase I footprinting analysis of RB3 resulted in a protection pattern spanning nucleotides -50 to -30. Eight of 10 residues encompassing a continuous region of protection within RB3 (positions -45 to -36) matched in the inverted orientation the conserved core sequence (ACCGTTCGTC) of RB1 and RB2. Quantitative binding measurements of AlgR association with RB1, RB2, and RB3 indicated that AlgR had significantly lower affinity for RB3 than for RB1 and RB2, with differences in the free energy of binding of 1.05 and 0.93 kcal/mol (4.39 and 3.89 kJ/mmol), respectively. Altering the core of RB2 to match the core of RB3 significantly reduced AlgR binding. Conversely, changing the core of RB3 to perfectly match the core of RB2 (mutant site termed RB3*) improved AlgR binding, approximating the affinity of RB2. RB3*, in the absence of the far upstream sites, showed an increase in activity, approaching the levels observed with the full-size algD promoter. Changing 4 nucleotides in two different combinations within the core of RB3 abolished the binding of AlgR to this site and resulted in a significant reduction of promoter activity in the presence of the far upstream sites. Thus, (i) the core sequence is essential for AlgR binding; (ii) the three binding sites, RB1, RB2, and RB3, are organized as an uneven palindrome with symmetrical sequences separated by 341 and 417 bp; and (iii) all three sites participate in algD activation.  相似文献   

19.
Dawe S  Duncan R 《Journal of virology》2002,76(5):2131-2140
We demonstrate that the S4 genome segment of baboon reovirus (BRV) contains two sequential partially overlapping open reading frames (ORFs), both of which are functional in vitro and in virus-infected cells. The 15-kDa gene product (p15) of the 5"-proximal ORF induces efficient cell-cell fusion when expressed by itself in transfected cells, suggesting that p15 is the only viral protein required for induction of syncytium formation by BRV. The p15 protein is a small, hydrophobic, basic, integral membrane protein, properties shared with the p10 fusion-associated small transmembrane (FAST) proteins encoded by avian reovirus and Nelson Bay reovirus. As with p10, the BRV p15 protein is also a nonstructural protein and, therefore, is not involved in virus entry. Sequence analysis indicates that p15 shares no significant sequence similarity with the p10 FAST proteins and contains a unique repertoire and arrangement of sequence-predicted structural and functional motifs. These motifs include a functional N-terminal myristylation consensus sequence, an N-proximal proline-rich motif, two potential transmembrane domains, and an intervening polybasic region. The unique structural properties of p15 suggest that this protein is a novel member of the new family of FAST proteins.  相似文献   

20.
The polymorphic DNA marker D20S14 was previously mapped to human chromosome 20 and shown to be linked to two other DNA markers, D20S5 and D20S6, located at 20p12. This segment has been implicated in several human diseases. Because of its importance, we mapped the D20S14 locus to 20p12----p11.2 by radioactive in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号