首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
TRPM7 is a Ca2+-permeant and Mg2+-permeant ion channel in possession of its own kinase domain. In a previous study, we showed that overexpression of the channel-kinase in HEK-293 cells produced cell rounding and loss of adhesion, which was dependent on the Ca2+-dependent protease m-calpain. The TRPM7-elicited change in cell morphology was channel-dependent and occurred without any significant increase in cytosolic Ca2+. Here we demonstrate that overexpression of TRPM7 increased levels of cellular reactive oxygen species (ROS) and nitric oxide, causing the activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Application of inhibitors of p38 MAPK and JNK blocked TRPM7-induced cell rounding and activation of m-calpain, without affecting the phosphorylation state of the protease. Overexpression of TRPM7 increased intracellular Mg2+; however, when the concentration of either external Ca2+ or Mg2+ was increased to favor the permeation of one divalent cation over the other, a similar increase in cell rounding and calpain activity was detected, indicating that TRPM7-mediated activation of m-calpain is not dependent on the nature of the divalent conducted by the channel. Application of inhibitors of nitric oxide synthase and mitochondrial-derived ROS reduced TRPM7-induced increases in nitric oxide and ROS production, blocked the change in cell morphology, and reduced cellular calpain activity. Collectively, our data reveal that excessive TRPM7 channel activity causes oxidative and nitrosative stresses, producing cell rounding mediated by p38 MAPK/JNK-dependent activation of m-calpain.  相似文献   

2.
BackgroundTransient receptor potential melastatin 7 (TRPM7) regulates breast cancer cell proliferation, migration, invasion and metastasis in its ion channel- and kinase domain-dependent manner. The pharmacological effects of TRPM7 ion channel inhibitors on breast cancer cells have been studied, but little is known about the effects of TRPM7 kinase domain inhibitors due to lack of potent TRPM7 kinase inhibitors.MethodsScreening was performed by using TRPM7 kinase assay. Effects of TG100-115 on breast cancer cell proliferation, migration, invasion, myosin IIA phosphorylation, and TRPM7 ion channel activity were assessed by using MTT, wound healing, transwell assay, Western blotting, and patch clamping, respectively.ResultsWe found that CREB peptide is a potent substrate for the TR-FRET based TRPM7 kinase assay. Using this method, we discovered a new and potent TRPM7 kinase inhibitor, TG100-115. TG100-115 inhibited TRPM7 kinase activity in an ATP competitive fashion with over 70-fold stronger activity than that of rottlerin, known as a TRPM7 kinase inhibitor. TG100-115 has little effect on proliferation of MDA-MB-231 cells, but significantly decreases cell migration and invasion. Moreover, TG100-115 inhibits TRPM7 kinase regulated phosphorylation of the myosin IIA heavy chain and phosphorylation of focal adhesion kinase. TG100-115 also suppressed TRPM7 ion channel activity.ConclusionsTG100-115 can be used as a potent TRPM7 kinase inhibitor and a potent inhibitor of breast cancer cell migration.General significanceTG100-115 could be a useful tool for studying the pharmacological effects of TRPM7 kinase activity aimed at providing insight into new therapeutic approaches to the treatment of breast cancer.  相似文献   

3.
A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.  相似文献   

4.
TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein''s expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the product of 5-lipoxygenase, or 5-HPETE''s downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of the TRPM7 channel capable of attenuating TRPM7''s function during cell stress, making them effective tools for the biophysical characterization and suppression of TRPM7 channel conductance in vivo.  相似文献   

5.
Transient receptor potential melastatin-like 7 (TRPM7) is a channel protein that also contains a regulatory serine-threonine kinase domain. Here, we find that Trpm7-/- T cells are deficient in Fas-receptor-induced apoptosis and that TRPM7 channel activity participates in the apoptotic process and is regulated by caspase-dependent cleavage. This function of TRPM7 is dependent on its function as a channel, but not as a kinase. TRPM7 is cleaved by caspases at D1510, disassociating the carboxy-terminal kinase domain from the pore without disrupting the phosphotransferase activity of the released kinase but substantially increasing TRPM7 ion channel activity. Furthermore, we show that TRPM7 regulates endocytic compartmentalization of the Fas receptor after receptor stimulation, an important process for apoptotic signaling through Fas receptors. These findings raise the possibility that other members of the TRP channel superfamily are also regulated by caspase-mediated cleavage, with wide-ranging implications for cell death and differentiation.  相似文献   

6.
Transient receptor potential cation channel subfamily M member 7 (TRPM7) composed of an ion channel and a kinase domain regulates triple-negative breast cancer (TNBC) cell migration, invasion, and metastasis, but it does not modulate TNBC proliferation. However, previous studies have shown that the combination treatment of nonselective TRPM7 channel inhibitors (2-aminoethoxydiphenyl borate and Gd3+) with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases antiproliferative effects and apoptosis in prostate cancer cells and hepatic stellate cells. We, therefore, investigated the potential role of TRPM7 in proliferation and apoptosis of TNBC cells (MDA-MB-231 and MDA-MB-468 cells) with TRAIL. We demonstrated that suppression of TRPM7 via TRPM7 knockdown or pharmacological inhibition synergistically increases TRAIL-induced antiproliferative effects and apoptosis in TNBC cells. Furthermore, we showed that the synergistic interaction might be associated with TRPM7 channel activities using combination treatments of TRAIL and TRPM7 inhibitors (NS8593 as a TRPM7 channel inhibitor and TG100-115 as a TRPM7 kinase inhibitor). We reveal that downregulation of cellular FLICE-inhibitory protein via inhibition of Ca2+ influx might be involved in the synergistic interaction. Our study would provide both a new role of TRPM7 in TNBC cell apoptosis and a potential combinatorial therapeutic strategy using TRPM7 inhibitors with TRAIL in the treatment of TNBC.  相似文献   

7.
Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7   总被引:7,自引:0,他引:7  
TRPM7 is a polypeptide with intrinsic ion channel and protein kinase domains whose targeted deletion causes cells to experience growth arrest within 24 hr and eventually die. Here, we show that while TRPM7's kinase domain is not essential for activation of its channel, a functional coupling exists such that structural alterations of the kinase domain alter the sensitivity of channel activation to Mg(2+). Investigation of the relationship between Mg(2+) and the cell biological role of TRPM7 revealed that TRPM7-deficient cells become Mg(2+) deficient, that both the viability and proliferation of TRPM7-deficient cells are rescued by supplementation of extracellular Mg(2+), and that the capacity of heterologously expressed TRPM7 mutants to complement TRPM7 deficiency correlates with their sensitivity to Mg(2+). Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains.  相似文献   

8.
Endothelial dysfunction is decisive and leads to the development of several inflammatory diseases. Endotoxemia-derived sepsis syndrome exhibits a broad inflammation-induced endothelial dysfunction. We reported previously that the endotoxin, lipopolysaccharide (LPS), induces the conversion of endothelial cells (ECs) into activated fibroblasts, showing a myofibroblast-like protein expression profile. Enhanced migration is a hallmark of myofibroblast function. However, the mechanism involved in LPS-induced EC migration is no totally understood. Some studies have shown that the transient receptor potential melastatin 7 (TRPM7) ion channel is involved in fibroblast and tumor cell migration through the regulation of calcium influx. Furthermore, LPS modulates TRPM7 expression. However, whether TRPM7 is involved in LPS-induced EC migration remains unknown.Here, we study the participation of LPS as an inducer of EC migration and study the mechanism underlying evaluating the participation of the TRPM7 ion channel.Our results demonstrate that LPS induced EC migration in a dose-dependent manner. Furthermore, this migratory process was mediated by the TLR-4/NF-κB pathway and the generation of ROS through the PKC-activated NAD(P)H oxidase. In addition, LPS increased the intracellular calcium level and the number of focal adhesion kinase (FAK)-positive focal adhesions in EC. Finally, we demonstrate that using TRPM7 blockers or suppressing TRPM7 expression through siRNA successfully inhibits the calcium influx and the LPS-induced EC migration.These results point out TRPM7 as a new target in the drug design for several inflammatory diseases that impair vascular endothelium function.  相似文献   

9.
TRPM7 is a ubiquitously expressed cation channel with a fused alpha kinase domain. It is highly permeable to magnesium and calcium, and is negatively gated by intracellular Mg(2+) and Mg-ATP. Substrates for the TRPM7 kinase domain include annexinA1 and myosin IIA heavy chain, and there is evidence to suggest a functional interaction between the channel and kinase domains. Alterations in the expression and activity of TRPM7 have profound effects on cell proliferation and differentiation. Genetic deletion of TRPM7 in model systems demonstrates that this channel is critical for cellular growth and embryonic development. Here, we provide a brief overview of the activity of TRPM7 and the associated regulatory mechanisms. We will then discuss the biological functions of TRPM7, emphasizing its role in development and the potential pathophysiological significance of TRPM7 in neurological and cardiovascular disease.  相似文献   

10.
TRPM7, a novel regulator of actomyosin contractility and cell adhesion   总被引:13,自引:0,他引:13  
Actomyosin contractility regulates various cell biological processes including cytokinesis, adhesion and migration. While in lower eukaryotes, alpha-kinases control actomyosin relaxation, a similar role for mammalian alpha-kinases has yet to be established. Here, we examined whether TRPM7, a cation channel fused to an alpha-kinase, can affect actomyosin function. We demonstrate that activation of TRPM7 by bradykinin leads to a Ca(2+)- and kinase-dependent interaction with the actomyosin cytoskeleton. Moreover, TRPM7 phosphorylates the myosin IIA heavy chain. Accordingly, low overexpression of TRPM7 increases intracellular Ca2+ levels accompanied by cell spreading, adhesion and the formation of focal adhesions. Activation of TRPM7 induces the transformation of these focal adhesions into podosomes by a kinase-dependent mechanism, an effect that can be mimicked by pharmacological inhibition of myosin II. Collectively, our results demonstrate that regulation of cell adhesion by TRPM7 is the combined effect of kinase-dependent and -independent pathways on actomyosin contractility.  相似文献   

11.
Phosphorylation of annexin I by TRPM7 channel-kinase   总被引:1,自引:0,他引:1  
TRPM7 is an unusual bifunctional molecule consisting of a TRP ion channel fused to a protein kinase domain. It has been shown that TRPM7 plays a key role in the regulation of intracellular magnesium homeostasis as well as in anoxic neuronal death. TRPM7 channel has been characterized using electrophysiological techniques; however, the function of the kinase domain is not known and endogenous substrates for the kinase have not been reported previously. Here we have identified annexin 1 as a substrate for TRPM7 kinase. Phosphorylation of annexin 1 by TRPM7 kinase is stimulated by Ca2+ and is dramatically increased in extracts from cells overexpressing TRPM7. Phosphorylation of annexin 1 by TRPM7 kinase occurs at a conserved serine residue (Ser5) located within the N-terminal amphipathic alpha-helix of annexin 1. The N-terminal region plays a crucial role in interaction of annexin 1 with other proteins and membranes, and therefore, phosphorylation of annexin 1 at Ser5 by TRPM7 kinase may modulate function of annexin 1.  相似文献   

12.
Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.  相似文献   

13.
TRPM7 is a ubiquitously expressed nonspecific cation channel that has been implicated in cellular Mg(2+) homeostasis. We have recently shown that moderate overexpression of TRPM7 in neuroblastoma N1E-115 cells elevates cytosolic Ca(2+) levels and enhances cell-matrix adhesion. Furthermore, activation of TRPM7 by phospholipase C (PLC)-coupled receptor agonists caused a further increase in intracellular Ca(2+) levels and augmented cell adhesion and spreading in a Ca(2+)-dependent manner (1). Regulation of the TRPM7 channel is not well understood, although it has been reported that PIP(2) hydrolysis closes the channel. Here we have examined the regulation of TRPM7 by PLC-coupled receptor agonists such as bradykinin, lysophosphatidic acid, and thrombin. Using FRET assays for second messengers, we have shown that the TRPM7-dependent Ca(2+) increase closely correlates with activation of PLC. Under non-invasive "perforated patch clamp" conditions, we have found similar activation of TRPM7 by PLC-coupled receptor agonists. Although we could confirm that, under whole-cell conditions, the TRPM7 currents were significantly inhibited following PLC activation, this PLC-dependent inhibition was only observed when [Mg(2+)](i) was reduced below physiological levels. Thus, under physiological ionic conditions, TRPM7 currents were activated rather than inhibited by PLC-activating receptor agonists.  相似文献   

14.
Transient receptor potential cation channel, subfamily M, receptor 7 (TRPM7) is a ubiquitous divalent-selective ion channel with its own kinase domain. Human gastric cancer cells express the TRPM7 channel, and the presence of this channel is essential for cell survival. Recent studies have suggested that 5-lipoxygenase (5-LOX) inhibitors are potent blockers of the TRPM7 channels. The aim of this study was to show the effects of 5-LOX inhibitors on the growth and survival of gastric cancer cells. Among 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA), 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), and 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2,2-dimethylpropanoic acid (MK886) were potent blockers of TRPM7-like currents in gastric cancer cells and also induced cell death. However, zileuton was ineffective in suppressing TRPM7-like current activity and inducing cell death. Moreover, a specific transient receptor potential cation channel, subfamily C, member 3 (TRPC3) inhibitor, a pyrazole compound (Pyr3), and a specific melastatin TRP (TRPM4) inhibitor, 9-phenanthrol, did not affect TRPM7-like currents or induce cell death. We conclude that TRPM7 has an important role in the growth and survival of gastric cancer cells and a likely potential target for the pharmacological treatment of gastric cancer.  相似文献   

15.
Hypomagnesemia with secondary hypocalcemia is an autosomal recessive disorder caused by mutations in the TRPM6 gene. Current experimental evidence suggests that TRPM6 may function in a specific association with TRPM7 by means of heterooligomeric channel complex formation. Here, we report the identification and functional characterization of a new hypomagnesemia with secondary hypocalcemia missense mutation in TRPM6. The affected subject presented with profound hypomagnesemia and hypocalcemia caused by compound heterozygous mutation in the TRPM6 gene: 1208(-1)G > A affecting the acceptor splice site preceding exon 11, and 3050C > G resulting in the amino acid change (P1017R) in the putative pore-forming region of TRPM6. To assess the functional consequences of the P1017R mutation, TRPM6(P1017R) and wild-type TRPM6 were co-expressed with TRPM7 in Xenopus oocytes and HEK 293 cells, and currents were assessed by two-electrode voltage clamp and whole cell patch clamp measurements, respectively. Co-expression of wild-type TRPM6 and TRPM7 resulted in a significant increase in the amplitude of TRPM7-like currents. In contrast, TRPM6(P1017R) suppressed TRPM7 channel activity. In line with these observations, TRPM7, containing the corresponding mutation P1040R, displayed a dominant-negative effect upon co-expression with wild-type TRPM7. Confocal microscopy and fluorescence resonance energy transfer recordings demonstrated that the P1017R mutation neither affects assembly of TRPM6 with TRPM7, nor co-trafficking of heteromultimeric channel complexes to the cell surface. We conclude that a functional defect in the putative pore of TRPM6/7 channel complexes is sufficient to impair body magnesium homeostasis.  相似文献   

16.
Transient receptor potential melastatin 7 (TRPM7) channels are divalent cation-selective ion channels that are permeable to Ca(2+) and Mg(2+). TRPM7 is ubiquitously expressed in vertebrate cells and contains both an ion channel and a kinase domain. TRPM7 plays an important role in regulating cellular homeostatic levels of Ca(2+) and Mg(2+) in mammalian cells. Although studies have shown that the kinase domain of TRPM7 is required for channel activation and can phosphorylate other target proteins, a systematic analysis of intact TRPM7 channel phosphorylation sites expressed in mammalian cells is lacking. We applied mass spectrometric proteomic techniques to identify and characterize the key phosphorylation sites in TRPM7 channels. We identified 14 phosphorylation sites in the cytoplasmic domain of TRPM7, eight of which have not been previously reported. The identification of phosphorylation sites using antibody-based immunopurification and mass spectrometry is an effective approach for defining the phosphorylation status of TRPM7 channels. The present results show that TRPM7 channels are phosphorylated at multiple sites, which serves as a mechanism to modulate the dynamic functions of TRPM7 channels in mammalian cells.  相似文献   

17.
Colorectal cancer (CRC) is an aggressive malignancy with poor prognosis. It is imperative to elucidate the potential molecular mechanisms that regulate CRC cell aggressiveness. In present study, the transient receptor potential melastatin 4 (TRPM4), a calcium-activated nonselective cation channel, is downregulated in CRC as a novel methylated tumor suppressor gene (TSG). The reduced mRNA level of TRPM4 is due to the epigenetic methylation of its promoter CpG island (CGI). Moreover, ectopic expression of TRPM4 inhibited tumor growth and metastasis both in vitro and in vivo. Our experiments also demonstrate that TRPM4 restructures the CRC cytoskeleton and activates the Ca2+-mediated calpain pathway through enhancing calcium influx. The western blot analysis shows that the expression of focal adhesion kinase (FAK), a calpain-mediated proteolytic substrate, is markedly suppressed after ectopic overexpression of TRPM4, besides, Akt (also known as protein kinase B, PKB), phosphatidylinositol 3-kinase (PI3K) as well as its central target mTOR have significantly decreased expression accompanied by elevated E-cadherin and restrained matrix metalloproteinases (MMP2/MMP9) expression. The inhibition of protease calpain effectively relieves the retard of FAK/Akt signals and reverses the migration suppression of TRPM4. Taken together, TRPM4, identified as a novel methylated TSG, employs intracellular Ca2+ signals to activate calpain-mediated cleavage of FAK and impede CRC migration and invasion through modulating the PI3K/Akt/mTOR signaling cascade, providing the first evidence that TRPM4 is likely to be a significant biomarker and potential target for CRC therapy.  相似文献   

18.
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+).  相似文献   

19.
The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.  相似文献   

20.
The calcium-sensing receptor (CaR) is a G protein-coupled, seven-transmembrane receptor and resides within caveolin-rich membrane domains in bovine parathyroid cells. The proenzyme of calpain 2 (m-calpain) is a heterodimeric calcium-dependent cysteine protease consisting of catalytic and regulatory subunits. The effects of calcium on the enzyme include activation, autolysis, and subunit dissociation. Here, we examine the potential role of caveolin-1 and caveolae in regulating the cellular distribution and function of m-calpain in parathyroid cells. We show that the inactive heterodimeric forms of m-calpain are concentrated in caveolin-rich membrane fractions prepared from parathyroid cells incubated with low extracellular calcium (Ca2+(o)). In contrast, in cells incubated with 3 mm Ca2+(o), which activates the CaR and increases intracellular calcium, there is a reduction in m-calpain in association with an increase in CaR protein and phosphorylated protein kinase C alpha and beta in caveolin-rich fractions. To assess the impact of activation of calpain on CaR protein in caveolar fractions, we analyzed the effects of m-calpain on the CaR. Activation of the CaR with high Ca2+(o) induced the release of lower molecular weight fragments of the receptor into the cell culture medium, and calpain inhibitors blocked this effect. Moreover, the fragments of the CaR as well as caveolin-1, m-calpain, and alkaline phosphatase were localized in membrane vesicles shed by parathyroid cells, supporting the association of these proteins in living cells. Treatment of CaR proteins in vitro with m-calpain also resulted in the appearance of lower molecular weight fragments of the CaR. Our data suggest that localization of m-calpain within caveolae may contribute to maintenance of the enzyme in an inactive state and that m-calpain may also contribute to the regulation of CaR levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号