首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated distribution of the nucleolar phosphoprotein Nopp140 within mammalian cells, using immunofluorescence confocal microscopy and immunoelectron microscopy. During interphase, three-dimensional image reconstructions of confocal sections revealed that nucleolar labelling appeared as several tiny spheres organized in necklaces. Moreover, after an immunogold labelling procedure, gold particles were detected not only over the dense fibrillar component but also over the fibrillar centres of nucleoli in untreated and actinomycin D-treated cells. Labelling was also consistently present in Cajal bodies. After pulse-chase experiments with BrUTP, colocalization was more prominent after a 10- to 15-min chase than after a 5-min chase. During mitosis, confocal analysis indicated that Nopp140 organization was lost. The protein dispersed between and around the chromosomes in prophase. From prometaphase to telophase, it was also detected in numerous cytoplasmic nucleolus-derived foci. During telophase, it reappeared in the reforming nucleoli of daughter nuclei. This strongly suggests that Nopp140 could be a component implicated in the early steps of pre-rRNA processing.  相似文献   

2.
Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric cohesion is one of the hallmarks of mitotic chromosomes. Our results imply that it is not an intrinsically stable property, because it can easily be destroyed by mitotic kinases, which are kept in check by shugoshin.  相似文献   

3.
4.
5.
Rapid evolution of yeast centromeres in the absence of drive   总被引:1,自引:0,他引:1       下载免费PDF全文
To find the most rapidly evolving regions in the yeast genome we compared most of chromosome III from three closely related lineages of the wild yeast Saccharomyces paradoxus. Unexpectedly, the centromere appears to be the fastest-evolving part of the chromosome, evolving even faster than DNA sequences unlikely to be under selective constraint (i.e., synonymous sites after correcting for codon usage bias and remnant transposable elements). Centromeres on other chromosomes also show an elevated rate of nucleotide substitution. Rapid centromere evolution has also been reported for some plants and animals and has been attributed to selection for inclusion in the egg or the ovule at female meiosis. But Saccharomyces yeasts have symmetrical meioses with all four products surviving, thus providing no opportunity for meiotic drive. In addition, yeast centromeres show the high levels of polymorphism expected under a neutral model of molecular evolution. We suggest that yeast centromeres suffer an elevated rate of mutation relative to other chromosomal regions and they change through a process of "centromere drift," not drive.  相似文献   

6.
Phosphorylation of the nuclear lamins during interphase and mitosis   总被引:68,自引:0,他引:68  
The nuclear lamina is a polymeric protein assembly that is proposed to function as an architectural framework for the nuclear envelope. Previous work suggested that phosphorylation of the major polypeptides of the lamina (the "lamins") may induce disassembly of this structure during mitosis. To further investigate the possible involvement of phosphorylation in regulation of lamina structure, we characterized lamin phosphorylation occurring in mammalian tissue culture cells during interphase and mitosis. Phosphorylation occurs continuously throughout all interphase periods (coordinately with nuclear envelope growth), and takes place mainly on the assembled lamina. When the lamina is disassembled during cell division, the lamins are modified with approximately 1-2 molecules of associated phosphate. This level of mitotic phosphorylation is 4-7-fold higher than the average interphase level. Lamin phosphate occurs predominantly as phosphoserine, and is distributed over numerous tryptic peptides, many of which are modified during both interphase and mitotic periods. Significantly, phosphorylation is the only detectable charge-altering postsynthetic modification of the lamins that occurs specifically during mitosis. The results of this study support the notion that phosphorylation is important for regulation of interphase and mitotic lamina structure.  相似文献   

7.
Summary Interphase nuclei isolated from paraffin-embedded tissue of four normal brains were hybridized with biotinated repetitive DNA probes specific for the (peri) centromeric regions of chromosomes 1 and 7. Hybridization results were visualized with a peroxidase-DAB system after which the number of specific signals per nucleus was counted using bright field microscopy. Using the probe specific for chromosome 7 (p7t1), both the cerebral and the cerebellar samples showed 2 spots in 82% and 83%, respectively, of the nuclei. In situ hybridization with the chromosome 1 probe (pUC1. 77) showed two spots in 69% of the cerebral nuclei. In cerebellar samples, hybridization with pUC1.77 resulted in only one large spot per nucleus in 82% of the cells. The average spot size in nuclei with one signal was about 1.6 times as large as that in nuclei with two signals. These observations suggest that the single large spot in the cerebellar cells is not the result of monosomy of chromosome 1 but that it reflects somatic pairing of the two chromosome 1 centromeres. Based on the size and the fraction of nuclei with one large spot, the small granular neuron is the most likely candidate. The difference between cerebral and cerebellar samples indicates that this somatic pairing of chromosome 1 is a cell-type-dependent phenomenon.  相似文献   

8.
9.
Root-tip metaphases from Hordeum vulgare (19 cells), H. marinum (11 cells), Aegilops umbellulata (10 cells) and Zea mays (10 cells) were completely reconstructed from electron micrographs of serially sectioned nuclei. The identity of each chromosome was found by measuring the volumes of its two arms and the presence or absence of a secondary constriction at the nucleolar organising region. With the position of the centromere in three dimensions, these data were used to analyse the relative positions of homologous and heterologous centromeres. In 31 out of the 50 cells analysed, homologues were on average further apart than heterologues. Except for two nucleolar organising chromosomes, there was no evidence of any tendency for the distances between different homologue types to be differently distributed from distances between heterologues. Average distances between homologues of the single nucleolar organising chromosome (linkage group 6) of Zea (2n = 20) were lower than the average for heterologues and the interhomologue distances were distributed significantly differently from the separation distances of chromosome 6 to other chromosomes. Presumably this association occurred because of nucleolar fusion in the previous interphase. Homologues of one of the two nucleolar organising chromosomes of A. umbellulata were also distributed significantly differently from heterologues, with a tendency for homologues to lie farther apart than the average heterologous pair. These results do not support previous work using squashed and spread metaphase preparations (some including abnormal, marked chromosomes) for these species.  相似文献   

10.
The structural basis of mitosis, spindle organisation and chromosome segregation, in the unicellular parasite Trypanosoma brucei is poorly understood. Here, using immunocytochemistry, fluorescent in situ hybridisation and electron microscopy, we provide a detailed analysis of mitosis in this parasite. We describe the organisation of the mitotic spindle during different stages of mitosis, the complex ultrastructure of kinetochores and the identification of a potential spindle-organising centre in the mitotic nucleus. We investigate the dynamics of chromosome segregation using telomeric and chromosome-specific probes. We also discuss the problems involved in chromosome segregation in the light of the fact that the T. brucei karyotype has 22 chromosomes in the apparent presence of only eight ultrastructurally defined kinetochores. Received: 9 August 1999; in revised form: 15 October 1999 / Accepted: 10 November 1999  相似文献   

11.
The spindle assembly checkpoint monitors the integrity of the spindle microtubules, which attach to sister chromatids at kinetochores and play a vital role in preserving genome stability by preventing missegregation. A key target of the spindle assembly checkpoint is securin, the separase inhibitor. In budding yeast, loss of securin results in precocious sister chromatid separation when the microtubule spindle is disrupted. However, in contrast to budding yeast, mammalian securin is not required for spindle checkpoint, suggesting that there are redundant mechanisms controlling the dissolution of sister chromatid cohesion in the absence of securin. One candidate mechanism is the inhibitory phosphorylation of separase. We generated a nonphosphorylable point mutant (S1121A) separase allele in securin-/- mouse embryonic stem cells. Securin(-/-)separase(+/S1121A) cells are viable but fail to maintain sister chromatid cohesion in response to the disruption of spindle microtubules, show enhanced sensitivity to nocodazole, and cannot recover from prometaphase arrest.  相似文献   

12.
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.  相似文献   

13.
Summary In an attempt to analyse long-term response in finite dioecious populations, selection processes are simulated on a computer with situations of parental population size, linkages between loci, selection intensity, and heritability, specified in a 34 factorial design. A diploid polygenic system of 40 loci on 4 chromosomes is considered for additive genes. Linkage levels are specified as free recombinations, adjacent loci 5 map units apart, and as clusters on chromosomes with a distance of only .5 units between adjacent loci. Parental populations of 8, 16, and 64, truncation selection of 1/2, 1/4, and 1/8 of the progeny each generation, and initial heritability of 1, 1/3, and 1/9 are simulated for various populations.For these populations, which are initially samples from a theoreticalHardy-Weinberg situation, it is shown that an initial linear phase of response, which may last for only 2 or 3 generations in some cases, depends on the intensity of selection alone. The effects and interactions of all the above factors on the curvilinearity of response in later generations are analysed. It appears that linkages between loci have a strong influence in reducing the rate of response and the total response. In the extreme cases of gene clusters in a parental population size of 8 with low heritability, truncation selection is relatively almost completely ineffective in causing change in the mean over generations. The effect of tight linkage is also exhibited in causing more reduction in genotypic variance than can be accounted for by corresponding response.The depressing effect of finiteness of population size on the rate of response and the total response appears to increase in geometric proportion with linkages between loci. The number of generations to fixation appears to be reduced in a similar manner. A strong interaction between population size and linkage is thereby found in various analyses. With parental populations as large as 64, linkage effects on response are negligible when recombinations between adjacent loci are .05 or more. In such situations there is a slower rate of response in later generations with linkage but the total response attained and the rate of fixation of inferior genes is about the same as for free recombinations. Increase in the intensity of selection appears to augment the effects of linkage in reducing the rate of response in later generations. This type of interaction is attributed to the accumulation of gametic disequilibria due to selection which are retained in the population over generations with linkage.
Zusammenfassung In der Absicht, das Verhalten einer begrenzten diözischen Population über einen langen Zeitraum zu analysicren, wurden Selektionsvorgänge auf einem Computer simuliert. Hierbei wurden die Größe der Elterpopulation, die Koppelung zwischen den Loci, die Selektionsintensität und die Heritabilität in einem 34-faktoriellen Versuch variiert. Es wird ein diploides polygenes System mit vierzig Loci auf vier Chromosomen mit additiver Genwirkung zugrunde gelegt. Für die Koppelungsbeziehungen werden freie Rekombination, ein Abstand von fünf Rekombinationseinheiten zwischen benachbarten Loci und die Bildung von Genclustern auf den Chromosomen mit jeweils nur 0,5Morgan-Einheiten Abstand zwischen benachbarten Loci angenommen. Es werden elterliche Populationen des Umfanges 8, 16 und 64, trunkierende (stutzende) Selektion mit einer Fraktion von 1/2, 1/4 und 1/8 der Nachkommen je Generation und eine ursprüngliche Heritabilität von 1, 1/3 und 1/9 für verschiedene Populationen simuliert.Für alle jene Populationen, die ursprünglich als Stichproben aus einer theoretischenHardy-Weinberg-Situation stammen, kann gezeigt werden, daß eine anfänglich lineare Phase der Reaktion, die in einigen Fällen nur über zwei bis drei Generationen anhält, allein von der Selektionsintensität abhängt. Die Wirkungen und Wechselwirkungen aller oben genannten Faktoren auf die Nichtlinearität der Reaktion in späteren Generationen wird untersucht. Es zeigt sich, daß Koppelung zwischen den Loci einen starken Einfluß auf die Reduktion der Reaktionsgeschwindigkeit und auf die Endreaktion ausübt. In dem extremen Fall der Gencluster in einer Ausgangspopulation des Umfanges 8 mit geringer Heritabilität ist die trunkierende Selektion hinsichtlich der Änderung des Mittels über Generationen hinweg praktisch völlig unwirksam. Die Wirkung enger Koppelung manifestiert sich außerdem in einer stärkeren Reduktion der genotypischen Varianz, als sie auf Grund der entsprechenden Reaktion erklärt werden kann. Der reduzierende Effekt der Begrenzung des Populationsumfanges auf die Reaktionsgeschwindigkeit und die Endreaktion erweist sich als geometrisch proportional zur Koppelung zwischen den Loci. Die Zahl der Generationen bis zur Fixierung wird in ähnlicher Weise reduziert. Hierbei wird eine starke Wechselwirkung zwischen der Populationsgröße und der Koppelung in den verschiedenen Untersuchungen beobachtet. Der Einfluß der Koppelung auf die Reaktion der Populationen kann vernachlässigt werden, wenn die elterliche Population den Umfang 64 hat und die Rekombination zwischen benachbarten Loci 0,05 übersteigt. In derartigen Situationen gibt es zwar eine langsamere Antwortrate in späteren Generationen mit Koppelung, jedoch ist die Endreaktion, die erreicht wird, und die Fixierungsrate überlegener Gene etwa die gleiche wie bei freier Spaltung. Eine Zunahme der Selektionsintensität scheint die Wirkung der Koppelung hinsichtlfch der Reduktion der Reaktionsgeschwindigkeit in späteren Generationen zu vergrößern. Dieser Typ der Wechselwirkung wird der Häufung gametischer Ungleichgewichte, die infolge der Selektion über Generationen in der Population erhalten werden, zugeschrieben.


Journal Paper No. 5872, Iowa Agriculture and Home Economics Experiment Station, Ames, supported by National Science Foundation Grant 19218 and National Institute of Health Grant GM-13827.

On leave fromWest Pakistan Agricultural University Lyallpur.

Statistical Laboratory and Department of Animal Science, respectively.  相似文献   

14.
Summary Kidney cells from primary cultures of 15-day old mouse embryos were incubated for 2, 5 or 10 min with H3-uridine, then either fixed immediately or incubated again for various periods in a chase medium containing an excess of unlabeled uridine and cytidine. The number of grains over the non-nucleolar part of the nucleus (chromatin), the nucleolus and the cytoplasm were counted on the autoradiograms.The grain count showed that both chromatin and nucleolus incorporate very rapidly H3-uridine from the medium, whereas a time lag elapses before any H3-radioactivity above background is detected in the cytoplasm. Incorporation of H3-uridine into the RNA of the nucleus and the nucleolus is not immediately blocked after chase, suggesting that the labeled precursor pool is not completely washed out from the living cell, or diluted by the excess of unlabeled uridine present in the medium. The grain count over the nucleus and the nucleolus rises for a certain time after chase and then gradually declines; H3-radioactivity appears in the cytoplasm 10 min after chase and keeps rising through a 110-min interval. The experiment, then — even though it suggests that the bulk of cellular RNA is synthesized in the chromatin and the nucleolus and then continuously released into the cytoplasm — does not rule out the possibility that some RNA fraction, characterized by a low turnover rate, is synthesized independently in the cytoplasm.Synthesis of RNA is a continuous process throughout the cell cycle, except during metaphase and anaphase. It ceases at prometaphase after the disappearance of the nucleolus and disintegration of the nuclear membrane, and resumes in early telophase. Part of the chromosomal RNA does not remain associated with the chromosomes through division, but is suddenly released into the cytoplasm when the cell enters metaphase.  相似文献   

15.
Waizenegger IC  Hauf S  Meinke A  Peters JM 《Cell》2000,103(3):399-410
In yeast, anaphase depends on cohesin cleavage. How anaphase is controlled in vertebrates is unknown because their cohesins dissociate from chromosomes before anaphase. We show that residual amounts of the cohesin SCC1 remain associated with human centromeres until the onset of anaphase when a similarly small amount of SCC1 is cleaved. In Xenopus extracts, SCC1 cleavage depends on the anaphase-promoting complex and separin. Separin immunoprecipitates are sufficient to cleave SCC1, indicating that separin is associated with a protease activity. Separin activation coincides with securin destruction and partial separin cleavage, suggesting that several mechanisms regulate separin activity. We propose that in vertebrates, a cleavage-independent pathway removes cohesin from chromosome arms during prophase, whereas a separin-dependent pathway cleaves centromeric cohesin at the metaphase-anaphase transition.  相似文献   

16.
Previous immunofluorescence studies of microtubule distribution in fertilized sea urchin eggs have suffered from poor resolution caused by cell thickness, unavoidable artifacts resulting from excessive flattening, or extraction by detergents of membranes and other lipid-containing structures that may be of interest in relation to the microtubules. To avoid these difficulties, we have developed a fixation and embedding protocol based on buffered paraformaldehyde fixation and butyl-methyl methacrylate embedment, which allows immunofluorescence staining of 0.5-1 micron sections. Polymerization artifacts are reduced by polymerizing the methacrylate at a relatively low temperature (40-45 degrees C) and by flat embedding for more uniform polymerization. Using this method, we have examined mitotic stages in the first cleavage cycle of the sea urchin Strongylocentrotus purpuratus. We provide evidence that the interphase microtubules that appear after first division are not derived from the mitotic asters but are new structures growing from organizing centers within the degenerating mitotic asters. During the transition from mitosis to interphase, there is a temporary overlap of old and new microtubules to form a very large composite aster at telophase before the old structure finally disappears.  相似文献   

17.
Centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) directs kinetochore assembly through a hierarchical binding of CENPs, starting with CENP-C and CENP-T. Centromeres are also the chromosomal regions where cohesion, mediated by cohesin, is most prominently maintained in mitosis. While most cohesin dissociates from chromosome arms in prophase, Shugoshin 1 (Sgo1) prevents this process at centromeres. Centromeric localization of Sgo1 depends on histone H2A phosphorylation by the kinase Bub1, but whether additional interactions with kinetochore components are required for Sgo1 recruitment is unclear. Using the Xenopus egg cell-free system, we here show that both CENP-C and CENP-T can independently drive centromeric accumulation of Sgo1 through recruitment of Bub1 to the KNL1, MIS12, NDC80 (KMN) network. The spindle assembly checkpoint (SAC) kinase Mps1 is also required for this pathway even in the absence of checkpoint signaling. Sgo1 recruitment is abolished in chromosomes lacking kinetochore components other than CENP-A. However, forced targeting of Bub1 to centromeres is sufficient to restore Sgo1 localization under this condition.  相似文献   

18.
Breast cancer-associated protein 1 (BRCA1) forms foci at sites of induced DNA damage, but any significance of these normal S-phase foci is unknown. BRCA1 distribution does not simply mirror or overlap that of replicating DNA; however, BRCA1 foci frequently abut sites of BrdU incorporation, mostly at mid-to-late S phase. Although BRCA1 does not overlap XIST RNA across the inactive X chromosome, BRCA1 foci position overwhelmingly in heterochromatic regions, particularly the nucleolar periphery where many centromeres reside. In humans and mice, including early embryonic cells, BRCA1 commonly associates with interphase centromere-kinetochore complexes, including pericentric heterochromatin. Proliferating cell nuclear antigen or BrdU labeling demonstrates that BRCA1 localizes adjacent to, or "paints," major satellite blocks as chromocenters replicate, where topoisomerase is also enriched. BRCA1 loss is often associated with proliferative defects, including postmitotic bridges enriched with satellite DNA. These findings implicate BRCA1 in replication-linked maintenance of centric/pericentric heterochromatin and suggest a novel means whereby BRCA1 loss may contribute to genomic instability and cancer.  相似文献   

19.
The cell nucleus is a highly organized structure and plays an important role in gene regulation. Understanding the mechanisms that sustain this organization is therefore essential for understanding genome function. Centromeric regions (CRs) of chromosomes have been known for years to adopt specific nuclear positioning patterns, but the significance of this observation is not yet completely understood. Here, using a combination of fluorescence in situ hybridization and immunochemistry on fixed human cells and high-throughput imaging, we directly and quantitatively investigated the nuclear positioning of specific human CRs. We observe differential attraction of individual CRs toward both the nuclear border and the nucleoli, the former being enhanced in nonproliferating cells and the latter being enhanced in proliferating cells. Similar positioning patterns are observed in two different lymphoblastoid cell lines. Moreover, the positioning of CRs differs from that of noncentromeric regions, and CRs display specific orientations within chromosome territories. These results suggest the existence of not-yet-characterized mechanisms that drive the nuclear positioning of CRs and therefore pave the way toward a better understanding of how CRs affect nuclear organization.  相似文献   

20.
Rae1 performs multiple functions in animal systems, acting in interphase as an mRNA export factor and during mitosis as a mitotic checkpoint and spindle assembly regulator. In this study we characterized multiple functions of Rae1 in plants. Virus-induced gene silencing of Nicotiana benthamiana Rae1 , NbRae1 , which encodes a protein with four WD40 repeats, resulted in growth arrest and abnormal leaf development. NbRae1 was mainly associated with the nuclear envelope during interphase, and NbRae1 deficiency caused accumulation of poly(A) RNA in the nuclei of leaf cells, suggesting defective mRNA export. In the shoot apex, depletion of NbRae1 led to reduced mitotic activities, accompanied by reduced cyclin-dependent kinase (CDK) activity and decreased expression of cyclin B1, CDKB1-1, and histones H3 and H4. The secondary growth of stem vasculature was also inhibited, indicating reduced cambial activities. Differentiated leaf cells of NbRae1 -silenced plants exhibited elevated ploidy levels. Immunolabeling in BY-2 cells showed that NbRae1 protein localized to mitotic microtubules and the cell plate-forming zone during mitosis, and recombinant NbRae1 directly bound to microtubules in vitro . Inhibition of NbRae1 expression in BY-2 cells using a β-estradiol-inducible RNAi system resulted in severe defects in spindle organization and chromosome alignment and segregation, which correlated with delays in cell cycle progression. Together, these results suggest that NbRae1 plays a dual role in mRNA export in interphase and in spindle assembly in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号