首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Estimated in this study were heritabilities and genetic and phenotypic correlations involving scrotal circumference (SC), percent live sperm, sperm number, sperm concentration, sperm motility, and an overall measure of a bull's potential breeding efficiency. Potential breeding efficiency is a composite trait based on a consideration of sperm concentration, sperm motility, sperm morphology and scrotal circumference. Data used were from three sources. Records on 863 Angus, 753 Polled Hereford, and 302 Simmental bulls were made available through the Missouri Performance-Tested Bull Sale and records on 1169 Polled Hereford bulls came from the American Polled Hereford Association. Information from these first two data sets were used to estimate heritability of scrotal circumference. The third data set was provided by Nichols Farms of Bridgewater, Iowa, and included information from the records of 465 yearling Polled Hereford and 264 yearling Simmental bulls. This latter data set was used to estimate all of the above mentioned parameters. Each data set was kept separately for the purpose of statistical analysis. Parameters were estimated using components from paternal half-sib analysis of variance and covariance. Pooled estimates of heritability for SC, sperm concentration, sperm motility, percent live sperm, sperm number and potential breeding efficiency were 0.51 +/- 0.09, 0.20 +/- 0.13, 0.11 +/- 0.12, 0.00, 0.19 +/- 0.14 and 0.13 +/- 0.12, respectively. Phenotypic correlations involving the six traits were very consistent for the two breeds. Combined across breeds their values ranged from 0.47 for SC and percent live sperm to 0.96 for sperm concentration and potential breeding efficiency. Corresponding genetic correlations were generally positive and high and ranged from 0.65 for SC and sperm motility to 1.14 for sperm number and potential breeding efficiency.  相似文献   

2.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.  相似文献   

3.
A total of 19 376 test day (TD) milk yield records from the first three lactations of 1618 cows daughters of 162 sires were used to estimate genetic and phenotypic parameters and determine the relationship between daily milk yield and lactation milk yield in the Sahiwal cattle in Kenya. Variance components were estimated using animal models based on a derivative free restricted maximum likelihood procedure. Variance components were estimated using various univariate and multi-trait fixed regression test day models (TDM) that defined contemporary groups either based on the year-season of calving (YSCV) or on the year-season of TD milk sampling (YSTD). Variance components were influenced by CG which resulted in differences in heritability and repeatability estimates between TDM. Models considering YSTD resulted in higher additive genetic variances and lower residual variances compared with models in which YSCV was considered. Heritability estimates for daily yield ranged from 0.28 to 0.46, 0.38 to 0.52 and 0.33 to 0.52 in the first, second and third lactation, respectively. In the first and second lactation, the heritability estimates were highest between TD 2 and TD 4. Genetic correlations among daily milk yields ranged from 0.41 to 0.93, 0.50 to 0.83 and 0.43 to 86 in the first, second and third lactation, respectively. The phenotypic correlations were correspondingly lower. Genetic correlations were different from unit when fitting multi-trait TDM. Therefore, a multiple trait model would be more ideal in determining the genetic merit of dairy sires and bulls based on daily yield records. Genetic and phenotypic correlations between daily yield and lactation yields were high and positive. Genetic correlations ranged from 0.84 to 0.99, 0.94 to 1.00 and 0.94 to 0.97 in the first, second and third lactations, respectively. The corresponding phenotypic correlation estimates ranged from 0.50 to 0.85, 0.50 to 0.83 and 0.53 to 0.87. The high genetic correlation between daily yield and lactation yield imply that both traits are influenced by similar genes. Therefore daily yields records could be used in genetic evaluation in the Sahiwal cattle breeding programme.  相似文献   

4.
《Small Ruminant Research》2001,39(3):209-217
Test day milk yields of three lactations in Sfakia sheep were analyzed fitting a random regression (RR) model, regressing on orthogonal polynomials of the stage of the lactation period, i.e. days in milk. Univariate (UV) and multivariate (MV) analyses were also performed for four stages of the lactation period, represented by average days in milk, i.e. 15, 45, 70 and 105 days, to compare estimates obtained from RR models with estimates from UV and MV analyses. The total number of test day records were 790, 1314 and 1041 obtained from 214, 342 and 303 ewes in the first, second and third lactation, respectively. Error variances and covariances between regression coefficients were estimated by restricted maximum likelihood. Models were compared using likelihood ratio tests (LRTs). Log likelihoods were not significantly reduced when the rank of the orthogonal Legendre polynomials (LPs) of lactation stage was reduced from 4 to 2 and homogenous variances for lactation stages within lactations were considered. Mean weighted heritability estimates with RR models were 0.19, 0.09 and 0.08 for first, second and third lactation, respectively. The respective estimates obtained from UV analyses were 0.14, 0.12 and 0.08, respectively. Mean permanent environmental variance, as a proportion of the total, was high at all stages and lactations ranging from 0.54 to 0.71. Within lactations, genetic and permanent environmental correlations between lactation stages were in the range from 0.36 to 0.99 and 0.76 to 0.99, respectively. Genetic parameters for additive genetic and permanent environmental effects obtained from RR models were different from those obtained from UV and MV analyses.  相似文献   

5.
Pregnancy and calving are elements indispensable for dairy production, but the daily milk yield of cows decline as pregnancy progresses, especially during the late stages. Therefore, the effect of stage of pregnancy on daily milk yield must be clarified to accurately estimate the breeding values and lifetime productivity of cows. To improve the genetic evaluation model for daily milk yield and determine the effect of the timing of pregnancy on productivity, we used a test-day model to assess the effects of stage of pregnancy on variance component estimates, daily milk yields and 305-day milk yield during the first three lactations of Holstein cows. Data were 10 646 333 test-day records for the first lactation; 8 222 661 records for the second; and 5 513 039 records for the third. The data were analyzed within each lactation by using three single-trait random regression animal models: one model that did not account for the stage of pregnancy effect and two models that did. The effect of stage of pregnancy on test-day milk yield was included in the model by applying a regression on days pregnant or fitting a separate lactation curve for each days open (days from calving to pregnancy) class (eight levels). Stage of pregnancy did not affect the heritability estimates of daily milk yield, although the additive genetic and permanent environmental variances in late lactation were decreased by accounting for the stage of pregnancy effect. The effects of days pregnant on daily milk yield during late lactation were larger in the second and third lactations than in the first lactation. The rates of reduction of the 305-day milk yield of cows that conceived fewer than 90 days after the second or third calving were significantly (P<0.05) greater than that after the first calving. Therefore, we conclude that differences between the negative effects of early pregnancy in the first, compared with later, lactations should be included when determining the optimal number of days open to maximize lifetime productivity in dairy cows.  相似文献   

6.
Test-day records for average flow rate (AFR) from the routine dairy recording from Bavarian Fleckvieh cows were analysed. Two data sets with observations on approximately 20 000 cows each were sampled from the total data set. For the estimation of variance parameters, a two-step approach was applied. In a first step multiple-trait restricted maximum likelihood (REML) analyses were carried out. For each of the first three lactations, six time periods with up to 33 days were defined. An algorithm for iterative summing of expanded part matrices was applied in order to combine the estimates. In a second step covariance functions (CF) for additive-genetic variances and non-genetic animal variances were derived using second-order Legendre polynomials plus an exponential term. Estimates of test-day heritability for AFR ranged from 0.21 to 0.40, and were largest in lactation 1. For lactations 1 and 3, heritabilities decreased considerably towards the end of lactation. Genetic correlation estimates within lactation decreased as the distance between days in milk (DIM) increased. Genetic correlations between corresponding DIM in the three lactations were generally large, ranging from 0.80 to 0.99. The largest estimates were found between DIM from lactations 2 and 3. Results from this study suggest that including AFR data from second and third lactations in genetic evaluation systems could the improve accuracy of genetic selection.  相似文献   

7.
Three-hundred and eighteen female swine representing contemporary commercial swine breeds (34 Chester White, 43 Large White, 42 Landrace, 40 Yorkshire, and 159 four-breed crossbreeds) were used to evaluate genetic variation between and within breeds for levels of plasma cholesterol and plasma triglycerides. Blood was sampled from all pigs after a 16-hr fast at 154 days of age. Plasma cholesterol was measured in all pigs and triglycerides were measured in 232 pigs. Paternal half-sib heritabilities (h2) for plasma cholesterol and plasma triglycerides were 0.45 +/- 0.23 and 1.04 +/- 0.32, respectively. Breed differences were not apparent for either trait. Phenotypic and paternal half-sib genetic correlations between the two traits were 0.16 and 0.66, respectively. Neither body weight nor backfat depth were important in affecting the estimate of h2 for either trait. The relatively high h2 of total plasma cholesterol and of total triglycerides offers the possibility of developing, through selection, populations of hypercholesterolemic or hypertriglyceridemic swine useful as models for studies directed toward further understanding of human cardiovascular disease.  相似文献   

8.
Data on 1210 spring-born (1983 to 1988) yearling heifers were analyzed by paternal half-sib procedures to obtain genetic and phenotypic parameter estimates involving birth weight and pelvic measurements. Data included records on 629 Angus, 325 Simmental, and 256 Salers representing 93, 49, and 22 paternal half-sib sire groups, respectively. Heritabilities for birth weight (BW), pelvic height (PH), pelvic width (PW), and pelvic area (PA) for Angus were 0.30, 0.61, 0.28, and 0.43, respectively. Corresponding values for Simmental and Salers heifers were 0.14, 0.34, 0.44, 0.37, and 0.18, 0.02, 0.29, 0.15, respectively. Genetic correlations among pelvic measurements (PH-PW, PH-PA, PW-PA) were positive (0.25 to 1.03) except for the estimate of -0.07 for PH-PW in Simmentals. Genetic correlations between BW and the 3 pelvic measurements (BW-PH, BW-PW, BW-PA) were negative (-0.18 to -0.36) except for the estimates of 0.53 (BW-PW) and 0.26 (BW-PA) in Simmentals and 2.84 (BW-PH) and 0.39 (BW-PA) in Salers. Phenotypic correlations among pelvic measurements ranged from 0.16 to 0.80. Phenotypic correlations between birth weight and the 3 pelvic measurements were consistently lower (-0.02 to 0.09) than the genetic correlations.  相似文献   

9.
Jacking in chinook salmon (Oncorhynchus tshawytscha) is an alternative reproductive strategy in which males sexually mature at least 1 year before other members of their year class. We characterize the genetic component of this reproductive strategy using two approaches; hormonal phenotypic sex manipulation, and a half-sib breeding experiment. We 'masculinized' chinook salmon larvae with testosterone, reared them to first maturation, identified jacks and immature males based on phenotype, and genotyped all fish as male ('XY') or female ('XX') using PCR-based Y-chromosome markers. The XY males had a much higher incidence of jacking than the XX males (30.8% vs 9.9%). There was no difference in body weight, gonad weight, and plasma concentrations of testosterone and 17beta-estradiol between the two jack genotypes, although XY jacks did have a higher gonadosomatic index (GSI) than XX jacks. In the second experiment, we bred chinook salmon in two modified half-sib mating designs, and scored the number of jacks and immature fish at first maturation. Heritability of jacking was estimated using two ANOVA models: dams nested within sires, and sires nested within dams with one-half of the half-sib families common to the two models. The sire component of the additive genetic variance yielded a high heritability estimate and was significantly higher than the dam component (h(2)(sire) = 0.62 +/- 0.21; h(2)(dam) = -0.14 +/- 0.12). Our experiments both indicated a strong sex-linked component (Y-chromosome) to jacking in chinook salmon, although evidence for at least some autosomal contribution was also observed.  相似文献   

10.
Female crickets can exert post-copulatory mating preferences by prematurely removing a male's spermatophore after copulation, which terminates sperm transfer. Although most models of sexual selection assume that female mating preferences are heritable, there has been little work addressing genetic variation underlying post-copulatory mate choice. We used a paternal half-sib design, in which different males were randomly assigned as mates to several females to create half-sib families, to determine the heritability of spermatophore retention time in female house crickets, Acheta domesticus. There was significant additive genetic variance in the timing of spermatophore removal by females [h(2) = 0.50 +/- 0.19 (+/- SE)], suggesting that the timing of spermatophore removal is determined, in part, by the female's own genotype independent of the quality of her mate. The relatively high heritability of spermatophore retention time may be reflective of the absence of strong selection on this trait, consistent with previous work showing no difference in the fitness of females permitted to freely remove the spermatophore of their mates and those forced to accept complete ejaculates.  相似文献   

11.
For continuously variable, polygenic characters, the response to selection depends upon the proportion of phenotypic variance that is caused by additive genetic variance, or narrow-sense heritability. Thus, a major goal of quantitative genetics is to partition phenotypic variance for a trait in a way that isolates additive genetic variance from other causes. The variance among paternal half-sib families, which is frequently used to estimate additive variance, is commonly recognized to include additive epistatic effects. However, this variance component can also include non-Mendelian paternal effects. We report here the results from a diallel crossing design used to isolate nonnuclear effects from the paternal nuclear contribution to disease resistance in the common morning glory, Ipomoea purpurea. In particular, we found that genetic variance for resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum dematium, was determined largely by a nonnuclear, additive paternal effect. We discuss potential mechanisms for this effect as well as some of their evolutionary implications.  相似文献   

12.
Segregation analyses with Gibbs sampling were applied to investigate the mode of inheritance and to estimate the genetic parameters of milk flow of Swiss dairy cattle. The data consisted of 204 397, 655 989 and 40 242 lactation records of milk flow in Brown Swiss, Simmental and Holstein cattle, respectively (4 to 22 years). Separate genetic analyses of first and multiple lactations were carried out for each breed. The results show that genetic parameters especially polygenic variance and heritability of milk flow in the first lactation were very similar under both mixed inheritance (polygenes + major gene) and polygenic models. Segregation analyses yielded very low major gene variances which favour the polygenic determinism of milk flow. Heritabilities and repeatabilities of milk flow in both Brown Swiss and Simmental were high (0.44 to 0.48 and 0.54 to 0.59, respectively). The heritability of milk flow based on scores of milking ability in Holstein was intermediate (0.25). Variance components and heritabilities in the first lactation were slightly larger than those estimates for multiple lactations. The results suggest that milk flow (the quantity of milk per minute of milking) is a relevant measurement to characterise the cows milking ability which is a good candidate trait to be evaluated for a possible inclusion in the selection objectives in dairy cattle.  相似文献   

13.
Preliminary evidence for the fifth autosomal linkage group in the horse, comprised of the loci for a red cell alloantigen (U) and serum protease inhibitor (Pi), was demonstrated by means of paternal half-sib groups in thoroughbred, standardbred and Arabian breeds. Recombination frequency in males was estimated to be 0.125 +/- 0.019.  相似文献   

14.
Milk production loss was studied in relation to increased somatic cell count (SCC). Available data were weekly test-day milk yields and SCC (in 1,000 cells/ml), and mastitis incidences. In total, 18,131 records from 274 cows were used. Production loss was determined for test-day kg milk, kg protein, and kg energy-corrected milk. Least-squares analysis of variance was used to estimate the direct effect of Log10(SCC) on production. The recorded measures of production were first corrected for fixed effects, with adjustment factors estimated from a healthy data-set. The average daily milk yield was 19.7 kg/day in first lactation and 22.0 in later lactations. The geometric mean of SCC was 63.1 in first lactation and 107.2 in later lactations. The incidence of clinical mastitis treated by a veterinarian was 19.8% of the lactations-at-risk. Linear relationships were found between the production parameters and Log10(SCC). Quadratic and cubic effects were evaluated, but were found to contribute little to the overall fit of the models. The individual milk yield loss was 1.29 kg/day for each unit increase in Log10(SCC) for cows in first lactation. Milk yield decreased by 2.04 kg/day per unit Log10(SCC) for older cows. Corresponding values for protein yield were 0.042 and 0.067 kg/day for first and later lactations, respectively.  相似文献   

15.
Application of test-day models for the genetic evaluation of dairy populations requires the solution of large mixed model equations. The size of the (co)variance matrices required with such models can be reduced through the use of its first eigenvectors. Here, the first two eigenvectors of (co)variance matrices estimated for dairy traits in first lactation were used as covariables to jointly estimate genetic parameters of the first three lactations. These eigenvectors appear to be similar across traits and have a biological interpretation, one being related to the level of production and the other to persistency. Furthermore, they explain more than 95% of the total genetic variation. Variances and heritabilities obtained with this model were consistent with previous studies. High correlations were found among production levels in different lactations. Persistency measures were less correlated. Genetic correlations between second and third lactations were close to one, indicating that these can be considered as the same trait. Genetic correlations within lactation were high except between extreme parts of the lactation. This study shows that the use of eigenvectors can reduce the rank of (co)variance matrices for the test-day model and can provide consistent genetic parameters.  相似文献   

16.
Summary Data on 16,557 chicks from 198 sire groups were analyzed to determine the importance of genotype-hatch interactions as sources of bias in the estimation of genetic parameters for eight-week weight in poultry. Estimates of heritability for eight-week weight obtained from a paternal half-sib correlation were .27±.04 and .29±.04 for males and females respectively when the sire component of variance was unconfounded with the sire-hatch interaction variance. If the sire-hatch interaction effects were confounded with the sire effects in an intra-hatch analysis the corresponding estimates of heritability would be .30 and .35 for males and females respectively. No attempt was made to artificially create differences in the hatch environments.The ratio of the dam-hatch interaction variance to the dam component of variance as compared with the sire-hatch interaction variance to the sire component gave a slight indication of a greater degree of importance of the interaction of non-additive genetic-environment effects than additive x environmental effects in the male progeny but not in the female progeny.The authors gratefully acknowledge Nichols, Inc., Brunswick, Maine for providing the data for this study.  相似文献   

17.
Bayesian inference of mixed models in quantitative genetics of crop species   总被引:1,自引:0,他引:1  
The objectives of this study were to implement a Bayesian framework for mixed models analysis in crop species breeding and to exploit alternatives for informative prior elicitation. Bayesian inference for genetic evaluation in annual crop breeding was illustrated with the first two half-sib selection cycles in a popcorn population. The Bayesian framework was based on the Just Another Gibbs Sampler software and the R2jags package. For the first cycle, a non-informative prior for the inverse of the variance components and an informative prior based on meta-analysis were used. For the second cycle, a non-informative prior and an informative prior defined as the posterior from the non-informative and informative analyses of the first cycle were used. Regarding the first cycle, the use of an informative prior from the meta-analysis provided clearly distinct results relative to the analysis with a non-informative prior only for the grain yield. Regarding the second cycle, the results for the expansion volume and grain yield showed differences among the three analyses. The differences between the non-informative and informative prior analyses were restricted to variance components and heritability. The correlations between the predicted breeding values from these analyses were almost perfect.  相似文献   

18.
To locate quantitative trait loci (QTL) for intramuscular fat deposition (marbling) in a local population of Japanese Black cattle, we performed a genome scan using a paternal half-sib family of Bull A. A marbling QTL was mapped in the region flanked by DIK0079 (20.7 cM) and TGLA303 (39.3 cM) on bovine chromosome (BTA) 7, affecting 5.0% of the total family variance. Haplotype analysis of the QTL region revealed that the marbling-increasing Q allele was transmitted from the dam. On the other hand, Bull B, a maternal half-sib of Bull A, did not receive the Q allele from its dam, based on the following findings: (i) a marbling QTL on BTA7 was not detected in the Bull B paternal half-sib family; (ii) recombination between DIK0079 (20.7 cM) and RM006 (25.4 cM) in the QTL region was observed in the maternal chromosome of Bull B; and (iii) the Q -harbouring steers from Bull A exhibited significantly higher marbling than the steers from Bull B and the remaining steers from Bull A. To precisely compare the maternal chromosomes of both bulls, we constructed a bacterial artificial chromosome contig covering the region between DIK0079 and RM006 and developed DNA markers. The recombination occurred between DIK8042 and DIK8044 , indicating that the marbling QTL was in a 2.9-cM region flanked by DIK0079 and DIK8044 .  相似文献   

19.
The objective of this study was to quantify the accuracy of imputing the genotype of parents using information on the genotype of their progeny and a family-based and population-based imputation algorithm. Two separate data sets were used, one containing both dairy and beef animals (n=3122) with high-density genotypes (735 151 single nucleotide polymorphisms (SNPs)) and the other containing just dairy animals (n=5489) with medium-density genotypes (51 602 SNPs). Imputation accuracy of three different genotype density panels were evaluated representing low (i.e. 6501 SNPs), medium and high density. The full genotypes of sires with genotyped half-sib progeny were masked and subsequently imputed. Genotyped half-sib progeny group sizes were altered from 4 up to 12 and the impact on imputation accuracy was quantified. Up to 157 and 258 sires were used to test the accuracy of imputation in the dairy plus beef data set and the dairy-only data set, respectively. The efficiency and accuracy of imputation was quantified as the proportion of genotypes that could not be imputed, and as both the genotype concordance rate and allele concordance rate. The median proportion of genotypes per animal that could not be imputed in the imputation process decreased as the number of genotyped half-sib progeny increased; values for the medium-density panel ranged from a median of 0.015 with a half-sib progeny group size of 4 to a median of 0.0014 to 0.0015 with a half-sib progeny group size of 8. The accuracy of imputation across different paternal half-sib progeny group sizes was similar in both data sets. Concordance rates increased considerably as the number of genotyped half-sib progeny increased from four (mean animal allele concordance rate of 0.94 in both data sets for the medium-density genotype panel) to five (mean animal allele concordance rate of 0.96 in both data sets for the medium-density genotype panel) after which it was relatively stable up to a half-sib progeny group size of eight. In the data set with dairy-only animals, sufficient sires with paternal half-sib progeny groups up to 12 were available and the within-animal mean genotype concordance rates continued to increase up to this group size. The accuracy of imputation was worst for the low-density genotypes, especially with smaller half-sib progeny group sizes but the difference in imputation accuracy between density panels diminished as progeny group size increased; the difference between high and medium-density genotype panels was relatively small across all half-sib progeny group sizes. Where biological material or genotypes are not available on individual animals, at least five progeny can be genotyped (on either a medium or high-density genotyping platform) and the parental alleles imputed with, on average, ⩾96% accuracy.  相似文献   

20.

Background

Identifying recombination events and the chromosomal segments that constitute a gamete is useful for a number of applications in genomic analyses. In livestock, genotypic data are commonly available for half-sib families. We propose a straightforward but computationally efficient method to use single nucleotide polymorphism marker genotypes on half-sibs to reconstruct the recombination and segregation events that occurred during meiosis in a sire to form the haplotypes observed in its offspring. These meiosis events determine a block structure in paternal haplotypes of the progeny and this can be used to phase the genotypes of individuals in single half-sib families, to impute haplotypes of the sire if they are not genotyped or to impute the paternal strand of the offspring’s sequence based on sequence data of the sire.

Methods

The hsphase algorithm exploits information from opposing homozygotes among half-sibs to identify recombination events, and the chromosomal regions from the paternal and maternal strands of the sire (blocks) that were inherited by its progeny. This information is then used to impute the sire’s genotype, which, in turn, is used to phase the half-sib family. Accuracy (defined as R2) and performance of this approach were evaluated by using simulated and real datasets. Phasing results for the half-sibs were benchmarked to other commonly used phasing programs – AlphaPhase, BEAGLE and PedPhase 3.

Results

Using a simulated dataset with 20 markers per cM, and for a half-sib family size of 4 and 40, the accuracy of block detection, was 0.58 and 0.96, respectively. The accuracy of inferring sire genotypes was 0.75 and 1.00 and the accuracy of phasing was around 0.97, respectively. hsphase was more robust to genotyping errors than PedPhase 3, AlphaPhase and BEAGLE. Computationally, hsphase was much faster than AlphaPhase and BEAGLE.

Conclusions

In half-sib families of size 8 and above, hsphase can accurately detect block structure of paternal haplotypes, impute genotypes of ungenotyped sires and reconstruct haplotypes in progeny. The method is much faster and more accurate than other widely used population-based phasing programs. A program implementing the method is freely available as an R package (hsphase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号