首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cilia-lacking respiratory cells in ciliary aplasia   总被引:1,自引:0,他引:1  
This report describes the ultrastructural alterations observed in the nasal and bronchial mucosa of an 11-yr-old male suffering from immotile cilia syndrome (ICS). The morphological features observed in this patient are consistent with a ciliary aplasia. In fact, ciliated cells appeared to be replaced by columnar cells lacking cilia and basal bodies, and bearing on their surface cilium-like projections without any internal axonemal structure. In spite of the absence of basal bodies, centrioles, and kinocilia, these cells unexpectedly showed mature striated roots and centriolar precursor material scattered throughout the apical cytoplasm. These data suggest that control over basal body assembly is distinct from control over striated root formation. The presence of the above-reported structures in cells otherwise presenting many morphological features of normal ciliated cells is discussed on the basis of current knowledge of respiratory cilia biogenesis.  相似文献   

2.
Gastric mucosa obtained from the body and pyloric portions of the human stomach were observed by light and transmission electron microscopy. Ciliated cells were found in two of 18 subjects examined, one patient with gastric ulcer and the other one with gastric adenocarcinoma. The ciliated cells were found in epithelia at sites away from the main lesions. The tissues containing ciliated cells showed intestinal metaplasia combined with mild chronic gastritis in both cases. The epithelial layer facing the gastric lumen was composed of columnar cells with numerous uniform microvilli and goblet cells. This epithelium extended to the superficial parts of the tubules surrounded by the lamina propria. The deeper portions of the tubules were composed of mucous secretory, endocrine, and rarely ciliated cells. These ciliated cells were provided with numerous cilia the numbers of which varied considerably from cell to cell. This was in contrast to the primary cilium which is usually single. The central part of the apical cell membrane was sometimes concave in the area from where cilia tended to arise. It was also observed that numerous basal bodies as well as mucus-like granules were contained in the same cell. The axonemal pattern was different from that of ordinary cilia and showed 9 + 0 and 8 + 1 patterns. In longitudinal sections it was found that one peripheral doublet was displaced to the center of the axoneme as it left the basal body.  相似文献   

3.
The process and regulation of ciliogenesis in human epithelia is little understood and many components of the cilium and associated structures have not been characterised. We have identified a monoclonal antibody, LhS28, which recognises a 44,000–45,000Mr protein specifically associated with human ciliated epithelial cells. Immunoperoxidase labelling of formalin-fixed paraffin wax-embedded human tissues showed that LhS28 was expressed in the sub-apical zone of ciliated epithelial cells of the Fallopian tube and upper respiratory tract, but not ciliated ependyma, non-ciliated epithelia or testis containing developing spermatozoa. Immunoelectron microscopy demonstrated that the antigen recognised by LhS28 was associated with the basal body structure of the cilium and specifically with the 9+0 microtubule arrays. LhS28 should be a useful tool in the identification of ciliated cells in pathological specimens and for investigating mechanisms of ciliogenesis.  相似文献   

4.
Myosin has been localized during ciliogenesis of quail oviduct by immunocytochemistry (immunofluorescence, immunoperoxidase, immunogold labeling) using a previously characterized monoclonal antibody. In ovariectomized quail oviduct many undifferentiated epithelial cells present a primary cilium arising from one of the diplosome centrioles. Myosin is associated with material located between the two centrioles. In contrast, in estrogen-stimulated quail oviduct, the material preceding the procentioles is never labeled. Basal bodies become labeled just before their migration toward the apical plasma membrane. During the anchoring phase, the labeling is mainly associated with the basal feet. In mature ciliated cells, myosin appears associated with an apical network embedding the basal bodies. This network is connected to a myosin-rich belt associated with the apical junctional complex which differentiates at the beginning of centriologenesis. The association of myosin with migrating basal bodies suggests that myosin could be involved in basal body movements.  相似文献   

5.
A monoclonal antibody (CC-212), obtained in a fusion experiment in which basal bodies from quail oviduct were used as immunogen, has been shown to label the apical pole of ciliated cells and to react with a 200-kD protein. This monoclonal antibody was demonstrated to be an anti-myosin from smooth muscle or from nonmuscular cells using the following criteria: On Western blots it reacted with the myosin heavy chains from gizzard and platelet extracts and from cultured cell line extracts, but did not react with striated muscle myosin heavy chains. By immunofluorescence it decorated the stress fibers of well-spread cells with a characteristic striated pattern, while it did not react with myotubes containing organized myofibrils. On native ciliated cells as well as on Triton-extracted ciliated cortices from quail oviduct, this monoclonal antibody decorated the apical pole with a stronger labeling of the periphery of the apical area. Ultrastructural localization was attempted using the immunogold technique on the same preparation. Myosin was associated with a filamentous material present between striated rootlets and the proximal extremities of the basal bodies. No labeling of the basal body itself or of axoneme was observed.  相似文献   

6.
7.
In ciliated cells of metazoa, striated rootlets associated with basal bodies anchor the ciliary apparatus to the cytoskeleton. We have used here a monoclonal antibody against a 175 kDa protein associated with the striated rootlets of quail ciliated cells, to study ciliated cells of different species. In mussel gill epithelium the antibody recognized a protein of 92 kDa which shows a periodic distribution along the striated rootlets. In frog ciliated palate epithelium, two different rootlets are associated with basal bodies, both are decorated and only one protein of 48 kDa is recognized on immunoblot. The antigen is arranged in a helix around the striated rootlets. In rabbit ciliated oviduct epithelium, we detected the presence of very small and thin rootlets which are weakly labeled. We have shown that an epitope associated with the striated rootlets is preserved through evolution although the molecular weight of the peptide varies. We have also observed the appearance of this epitope on protein associated with junctional complexes in rabbit and cytoskeleton component in quail oviduct.  相似文献   

8.
The novel isoform of protein kinase C (PKC), PKCepsilon, is an important regulator of ciliated cell function in airway epithelial cells, including cilia motility and detachment of ciliated cells after environmental insult. However, the mechanism of PKCepsilon signaling in the airways and the potential role of the PKCepsilon-interacting protein, receptor for activated C kinase 1 (RACK1), has not been widely explored. We used immunohistochemistry and Western blot analysis to show that RACK1 is localized exclusively to basal, non-ciliated (and non-goblet) bovine and human bronchial epithelial cells. Our immunohistochemistry experiments used the basal body marker pericentrin, a marker for cilia, beta-tubulin, and an airway goblet cell marker, MUC5AC, to confirm that RACK1 was excluded from differentiated airway cell subtypes and is only expressed in the basal cells. These results suggest that PKCepsilon signaling in the basal airway cell may involve RACK1; however, PKCepsilon regulation in ciliated cells uses RACK1-independent pathways.  相似文献   

9.
Ciliated cysts in the human uterine tube epithelium were investigated with the transmission electron microscope. The cysts were about 3-9 microns in diameter and were provided with many ciliary apparatuses and microvilli. Degenerative changes of these cilia, such as electron-dense round or irregular bodies and amorphous substance, were observed in many cysts, but complete disappearance of ciliary structures was not detected in any ciliated cysts. The ciliated cysts were mostly observed in basal cells and were occasionally found in ciliated cells bordering the tubal lumen. In the basal cells, these cysts distended with the increase in degenerated cilia. Distended ciliated-cyst-containing cells became exposed directly to the tubal lumen. U- or reverse omega-shaped deep indentations of the apical surface of ciliated cells confirmed the opening of ciliated cysts into the lumen. It was suggested that the ciliated cysts result from the premature differentiation of basal cells or disturbed migration of centrioles in ciliogenic cells.  相似文献   

10.
The present study reveals a deficiency in the number of ciliated basal bodies along 180° rotated ciliary rows (IRs) in Tetrahymena. This feature is common to IRs recently generated in young clones with stable corticotypes (total number of ciliary rows per cell), irrespective of the number of IRs present per cell or their cellular location, and is found before the cell loses any of the IRs. In cells bearing three IRs, the IRs on the two sides of the inversion immediately next to normal ciliary rows (junctures) exhibit an even greater deficiency in ciliated basal bodies, compared to the IR located internally between two other IRs; the normal ciliary rows flanking the inversion are also somewhat deficient. These observations show that the IRs of Tetrahymena are structurally deficient, hence developmentally defective, and suggest that they are intrinsically unstable. We propose that basal body development along IRs tends to be truncated before the stage of ciliation; such basal bodies would fail to acquire the potential to serve as nucleating centers for new basal body development in the next round of basal body proliferation, leading to the eventual loss of the IRs. © 1992 Wiley-Liss, Inc.  相似文献   

11.
The contractile system of the female Intoshia variabili (Orthonectida) consists of smooth muscles. The attachment of the longitudinal muscle fibres at the anterior and the posterior tips of the body is rather peculiar, accomplished by means of elongated terminal muscle cells piercing through several ciliated cells. In the last ciliated cell, the muscle cell invaginates the ciliated cell basal membrane almost up to the ciliated cell surface. Here, around the protrusion terminus, there is an electron‐dense zone in contact with the cilia rootlets.  相似文献   

12.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

13.
The bronchiolar ciliated cells are exquisitely sensitive to injury caused by infection or irritation of the airways. The mechanism by which bronchiolar ciliated cells are renewed following injury or during the normal course of differentiation is still debated. The present study aimed at recognizing the progenitor cell population for bronchiolar ciliated cells during early neonatal life of calves and to demonstrate the course of events occurs during its differentiation into ciliated cells. Scanning electron microscopy of the terminal bronchiolar epithelium revealed two distinct cell types namely ciliated and non-ciliated cells. Transmission electron microscopy revealed ciliated, non-ciliated (Clara), intermediate and basal cells. At least two categories of intermediate cells could be distinguished: intermediate cells with abundant glycogen and variable numbers of organelles; intermediate cells with little glycogen, large numbers of polyribosomes, and variable numbers of basal bodies. We conclude that: (1) both bronchiolar non-ciliated and basal cells serve as progenitors for the bronchiolar ciliated cells; (2) differentiation of ciliated cell from the non-ciliated one involves a transitional cell in which glycogen is lost, polyribosomes are synthesized before the synthesis of basal bodies and cilia.  相似文献   

14.
Summary The basal apparatus of embryonic cells of the sea urchin Lytechinus pictus was examined by transmission electron microscopy and compared with the basal apparatus of other metazoan cells. The basal apparatus in these cells is associated with a specialized region of the apical cell surface that is encircled by a ring of microvilli. The basal apparatus includes several features that are common to all ciliated cells, including a basal body, basal foot, basal foot cap, and striated rootlet. However, a component not seen in the basal apparatus of other species has been observed in these cells. This structure is continuous with the striated rootlet, and its ultrastructure indicates that it is composed of the same components as the rootlet. This structure extends from the junction of the basal body and striated rootlet to the cortical region that surrounds the basal body. Based on its morphology and position, this structure is referred to as a striated side-arm. The striated side-arm is always aligned in the plane of the basal foot. Thus, both of these structures extend from the basal body in the plane of the effective stroke. It is suggested that the striated side-arm serves to stabilize the basal apparatus against force exerted by the cilium.  相似文献   

15.
Hamster tracheal epithelia consist of three cell types: ciliated, mucus and basal cells. Autoradiographic data from several studies suggest that either basal or non-ciliated columnar cells may serve as stem cells for regeneration of lost or damaged ciliated and mucus cells. The objective of the present study was to examine the role of basal cells in the formation of ciliated and mucus cells in hamster tracheal epithelial (HTE) cell cultures via tritiated thymidine ([3H]-TdR) autoradiography. When 3 day cultures were pulsed with [3H]-TdR for 6 hr and incubated for 2 additional days in non-radioactive media (5 day total) label was present in the nuclei of basal and columnar epithelial cells suggesting that the labeled columnar cells may be derived from basal cells. However, the morphological reorganization occurring during this 2 day interval may create difficulties in this interpretation. Since these morphological changes are minimal during the 6 day to 8 day in vitro period, 6 day HTE cultures were pulsed with [3H]-TdR for 6 hr and incubated for 2 additional days in non-radioactive media (8 day total), and examined to further study the fate of labeled basal cells during this period. Analysis of these 8 day cultures revealed that labeled nuclei were present in both basal cells and adjacent ciliated and mucus cells. These results do not exclude the possibility of non-basal cell origin of ciliated and mucus cells in other systems but suggest that, at least in HTE cultures, undifferentiated basal cells have the ability to develop into ciliated and mucus cells.  相似文献   

16.
The presence and localization of high molecular weight microtubule-associated proteins of the MAP 1 class in ciliated cells of porcine and rat respiratory tract was studied by immunoblotting and immunoelectron microscopy. Ciliary shafts of the porcine tracheal epithelium were isolated using a method that minimizes contamination of the preparation by other cellular fragments and fat. Immunoblotting with rabbit antibodies to bulk MAP 1 from hog brain clearly revealed the presence of anti-MAP 1-immunoreactive high molecular weight proteins of the MAP 1 size in these preparations. To localize MAP 1 proteins at the ultrastructural level, rat and porcine tracheal epithelia were embedded in LR White and subjected to immunogold electron microscopy. Anti-MAP 1-immunoreactive material was found at ciliary shafts and basal bodies, but not at basal feet or ciliary rootlets. Interestingly, the necklace region between the shaft and the basal body of the cilium was hardly reactive with anti-MAP 1 antibodies. This may indicate a reduced stability of ciliary microtubules in this region and could be an explanation why ciliary shafts in general break more easily there than elsewhere.  相似文献   

17.
The gill ctenidium growth tip of the lamellibranch mollusc Aequipecten irradians recapitulates the temporal development of ciliated gill filaments and related structures in a spatial fashion. This “meristematic” relationship has allowed a study of basal body formation and ciliogenesis in adjacent cells of gill filament papillae at stages of progressively more advanced relative development. Basal bodies appear to originate quite rapidly, subsequent to the appearance of a complex of dense granules, quite reminiscent of the “condensation forms” or “procentriole precursors” typically seen in vertebrate ciliogenesis. Unlike basal body generation in higher forms, that in Aequipecten shows no obvious organized intermediate stages. During ciliation, randomly-oriented, nearly complete procentrioles are found concomitantly with actively-functioning basal bodies. Cilia formation in more advanced, already-ciliated cells is again preceded by the presence of granular complexes. Ciliogenesis in this mollusc thus shares with certain lower forms the property of very rapid basal body formation but, like many higher forms, it is preceded by the formation of a granular precursor complex, presumably consisting of particulate microtubule protein.  相似文献   

18.
In ciliated airway epithelial cells endothelial nitric oxide synthase as well as several other membrane bound proteins are located in the apical cell pole. To date, mechanisms that serve to target and to keep these proteins in this region are unknown. Endothelial nitric oxide synthase is known to target to caveolae by interaction with caveolin-1 or caveolin-3. Since caveolin-1 is found only in a subpopulation of ciliated cells at the basolateral cell membrane, we examined if caveolin-3 could be responsible for the apical localization of endothelial nitric oxide synthase in ciliated cells. We used real-time RT-PCR, laser-assisted microdissection, Western blotting and double-labeling immunohistochemistry to examine the presence of caveolin-3 in the airway epithelium of the rat. Indeed, we found caveolin-3-mRNA as well as protein in ciliated cells throughout the trachea and the bronchial tree. Caveolin-3-immunoreactivity was confined to the apical region and was colocalized with endothelial nitric oxide synthase and the high affinity choline transporter in a compartment distinct from the plasma membrane at the light microscopic level. No caveolae were found in the apical plasma membrane of ciliated cells but a tubulovesicular network was present in the apical region that reached up to the basal bodies of the cilia and was in close contact with mitochondria. Co-immunoprecipitation of caveolin-3 with endothelial nitric oxide synthase verified that both proteins interact in airway ciliated cells. These findings indicate that caveolin-3 is responsible to keep endothelial nitric oxide synthase in a membrane compartment in the apical region of ciliated cells.  相似文献   

19.
Endothelial nitric oxide synthase (eNOS), originally found in the endothelium of vascular tissue, also exists in other cell types, including ciliated epithelia of airways. The eNOS is ultrastructurally localized to the basal body of the microtubules of the cilia, and nitric oxide (NO) stimulates ciliary beat frequency (CBF). We examined whether the expression of eNOS is present in ciliated cells of other organs. Western blotting analysis revealed that eNOS was expressed in the rat cerebrum, lung, trachea, testis, and oviduct. Immunohistochemical staining showed that eNOS was localized in the ciliated epithelia of airways, oviduct, testis, and ependymal cells of brain in addition to the endothelium and smooth muscle of the vasculature. To confirm the activation of eNOS in the ciliated epithelia, we examined the effect of L-arginine (L-Arg), the substrate of NOS, on the production of nitrite and nitrate (NOx) in the cultured explants of rat trachea. L-Arg (100 microM) increased NOx levels significantly (p<0.05). In explants exposed to inhibitors of NOS, the effect of l-Arg on the production of NOx was blocked. These findings suggest that epithelial NO plays an important role in signal transduction associated with ciliary functions.  相似文献   

20.
The secondary and primary (mesobronchus) bronchi of chicken lung are lined by a typical respiratory epithelium: pseudostratified columnar ciliated with goblet cells. Up to date, four constituting epithelial cell types have been identified: ciliated, mucosecretory, basal and endocrine cells. In this study a putative new epithelial cell type, the brush-like cell, is described. The avian brush-like cells have only been found in the bronchial epithelia but never in the gas-exchange areas. They are scattered among the other epithelial cells, mainly ciliated cells, and their number is extremely low. The characteristic morphological feature of these cells is an apical protruding cytoplasm with microvilli. This cell type is similar to that found in the lung of some mammalian and non-mammalian species. The functional role of these cells is not yet clear; they could carry out absorptive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号