首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Safflower (Carthamus tinctorius L.) has received a significant amount of attention as a medicinal plant and oilseed crop. Gene expression studies provide a theoretical molecular biology foundation for improving new traits and developing new cultivars. Real-time quantitative PCR (RT-qPCR) has become a crucial approach for gene expression analysis. In addition, appropriate reference genes (RGs) are essential for accurate and rapid relative quantification analysis of gene expression. In this study, fifteen candidate RGs involved in multiple metabolic pathways of plants were finally selected and validated under different experimental treatments, at different seed development stages and in different cultivars and tissues for real-time PCR experiments. These genes were ABCS, 60SRPL10, RANBP1, UBCL, MFC, UBCE2, EIF5A, COA, EF1-β, EF1, GAPDH, ATPS, MBF1, GTPB and GST. The suitability evaluation was executed by the geNorm and NormFinder programs. Overall, EF1, UBCE2, EIF5A, ATPS and 60SRPL10 were the most stable genes, and MBF1, as well as MFC, were the most unstable genes by geNorm and NormFinder software in all experimental samples. To verify the validation of RGs selected by the two programs, the expression analysis of 7 CtFAD2 genes in safflower seeds at different developmental stages under cold stress was executed using different RGs in RT-qPCR experiments for normalization. The results showed similar expression patterns when the most stable RGs selected by geNorm or NormFinder software were used. However, the differences were detected using the most unstable reference genes. The most stable combination of genes selected in this study will help to achieve more accurate and reliable results in a wide variety of samples in safflower.  相似文献   

3.
4.
The quantitative real-time PCR (qPCR) based techniques have become essential for gene expression studies and high-throughput molecular characterization of transgenic events. Normalizing to reference gene in relative quantification make results from qPCR more reliable when compared to absolute quantification, but requires robust reference genes. Since, ideal reference gene should be species specific, no single internal control gene is universal for use as a reference gene across various plant developmental stages and diverse growth conditions. Here, we present validation studies of multiple stably expressed reference genes in cultivated peanut with minimal variations in temporal and spatial expression when subjected to various biotic and abiotic stresses. Stability in the expression of eight candidate reference genes including ADH3, ACT11, ATPsyn, CYP2, ELF1B, G6PD, LEC and UBC1 was compared in diverse peanut plant samples. The samples were categorized into distinct experimental sets to check the suitability of candidate genes for accurate and reliable normalization of gene expression using qPCR. Stability in expression of the references genes in eight sets of samples was determined by geNorm and NormFinder methods. While three candidate reference genes including ADH3, G6PD and ELF1B were identified to be stably expressed across experiments, LEC was observed to be the least stable, and hence must be avoided for gene expression studies in peanut. Inclusion of the former two genes gave sufficiently reliable results; nonetheless, the addition of the third reference gene ELF1B may be potentially better in a diverse set of tissue samples of peanut.  相似文献   

5.
Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica—C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica—C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.  相似文献   

6.
Toxicity assessments using the diatom Ditylum brightwellii are well documented; however, analysis of their toxicogenomics has been little attempted. Currently, quantitative real-time PCR is the most accurate and widely applied method to detect differential gene expression, including that of specific genes induced by environmental contaminants. This method requires internal reference genes to normalize expression levels, and their selection is a critical factor for the correct analysis of the results. Here, we assessed the gene expression stability of nine housekeeping genes (HKGs), including 18S rRNA, ACT, TUA, EF2, MDH, UBQ, UCE, PCNA, and GAPDH, in 28 RNA samples of D. brightwellii. All the tested HKGs displayed different expression patterns under different experimental conditions such as heat shock and exposure to metals and non-metals. Analysis of C T values showed that at least two genes were required for proper normalization according to the tested conditions. Overall, TUA, followed by ACT, was the most stable gene under all conditions. Furthermore, we examined the expression of the HSP70 gene in D. brightwellii when exposed to heat shock and chemicals by using the most stable references and found that the gene was significantly up-regulated during the stress period. This study has evaluated, for the first time, the normalization genes in D. brightwellii, providing potential references for gene expression studies of diatoms.  相似文献   

7.
8.
9.
10.
11.
Real-time RT-PCR (RT-qPCR) is a sensitive and precise method of quantifying gene expression, however, suitable reference genes are required. Here, a systematic reference gene screening was performed by RT-qPCR on 22 candidate genes in Hevea brasiliensis. Two ubiquitin-protein ligases (UBC2a and UBC4) were the most stable when all samples were analyzed together. A mitosis protein (YLS8) and a eukaryotic translation initiation factor (eIF1Aa) were the most stable in response to tapping. UBC2b and UBC1 were the most stable among different genotypes. UBC2b and a DEAD box RNA helicase (RH2b) were the most stable across individual trees. YLS8 and RH8 were most stably expressed in hormone-treated samples. Expression of the candidate reference genes varied significantly across different tissues, and at least four genes (RH2b, RH8, UBC2a and eIF2) were needed for expression normalization. In addition, examination of relative expression of a sucrose transporter HbSUT3 in different RNA samples demonstrated the importance of additional reference genes to ensure accurate quantitative expression analysis. Overall, our work serves as a guide for selection of reference genes in RT-qPCR gene expression studies in H. brasiliensis.  相似文献   

12.
Quantitative real-time RT-PCR (RT-qPCR) is a technology that can be used to analyze the abundance of gene expression. Reference genes, which are assumed to remain at constant levels in different tissues at various developmental stages and photoperiodic treatments, were selected to analyze the expression levels of flowering time genes and floral development genes. Using digital gene expression technology, nine reference genes with moderate expression in the leaves of Chrysanthemum lavandulifolium at the juvenile phase (CK1) and the squaring stage (W1) were selected as the candidate reference genes for further study. A total of 115 biological samples of C. lavandulifolium were analyzed, including different tissues under various developmental stages and leaves with varied photoperiodic treatments. The stability of the nine reference genes was slightly variable across the samples, but MTP, SKIP16 and PGK were the most stable genes overall. In addition, the relative expression level of ClFT in different tissues of plants with the competence to flower was analyzed to verify the reference genes selected in this study. These studies provide a guide for selecting reference genes for analyzing the expression pattern of flowering time genes and floral development genes in C. lavandulifolium.  相似文献   

13.
H. Mao  K. Chen  X. Zhu  Q. Luo  J. Zhao  W. Li  X. Wu  H. Xu 《Journal of fish biology》2017,90(6):2312-2322
A systematic study was conducted to identify reliable reference genes for normalization of gene expression analysis in the blotched snakehead Channa maculata under normal physiological conditions. Firstly, the partial complementary (c)DNA of nine candidate reference genes (actb, tmem104, ube2l3, ef1α, churc1, tmem256, rpl13a, sep15 and g6pd) were cloned from C. maculata. The expression levels of these genes were then assessed in embryos of different developmental stages and various tissue types of adult fish using quantitative real‐time (qrt‐)PCR. RefFinder algorithm was used to evaluate the expression stability of these genes based on their cycle‐threshold (Ct) values in the qrt‐PCR analysis. Results showed that there was no single best reference gene for all stages of embryos and adult tissues tested. Furthermore, it was found that, among the nine candidate genes tested, actb and tmem104 were the most stable reference genes across adult tissue types, while sep15 and tmem256 were the most stable ones across developmental stages of embryos. These stable reference genes are recommended for normalization of gene expression analysis in C. maculata.  相似文献   

14.
qRT-PCR is becoming a routine tool in molecular biology to study gene expression. It is necessary to find stable reference genes when performing qRT-PCR. The expression of genes cloned in oil-tea camellia currently cannot be accurately analyzed due to a lack of suitable reference genes. We collected different tissues (including roots, stems, leaves, flowers and seeds) from six oil-tea camellia species to determine stable reference genes. Five novel and ten traditional reference gene sequences were selected from the RNA-seq database of Camellia oleifera Abel seeds and specific PCR Primers were designed for each. Cycle threshold (C t) data were obtained from each reaction for all samples. Three different software tools, geNorm, NormFinder and Best-Keeper were applied to calculate the expression stability of the candidate reference genes according to the C t values. The results were similar between the three software packages, and indicated that the traditional genes TUBα-3, ACT7α and the novel gene CESA were relatively stable in all species and tissues. However, no genes were sufficiently stable across all species and tissues, thus the optimal number of reference genes required for accurate normalization varied from 2 to 6. Finally, the relative expression of squalene synthase (SQS) and squalene epoxidase (SQE) genes related to important ingredients squalene and tea saponin in oil-tea camellia seeds were compared by using stable to less stable reference genes. The comparison results validated the selection of reference genes in the current study. In summary, for the different tissues of six oil-tea camellia species different optimal numbers of suitable reference genes were found.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号