首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:评价在CT三维重建上测量重度先天性脊柱侧凸Cobb角度的可重复性和可靠性。方法:收集在我院诊治的重度先天性脊柱侧凸病人的CT三维重建和脊柱全长X线片,共计67例。由五名不同测量者对CT三维重建脊柱畸形冠状面主弯Cobb角测量两次,两次间隔在三周以上,并测量脊柱全长X线片脊柱畸形冠状面主弯Cobb角一次,运用组内相关系数分析测量结果之间的可重复性和可靠性。结果:同一测量者两次测量结果之间的差值平均为4.5°。同一测量者两次测量结果之间的组内相关系数为0.969,不同测量者之间测量结果的组内相关系数为0.913。取五名测量者在CT三维重建上第一次测量的Cobb角度,其平均值为(110.5±23.5)°,五名测量者在X线片上测量结果的平均值为(103.1±22.0)°,对两组数据进行Mann-Whitney非参数检验差异有统计学意义(Z=-2.86,P=0.004)。结论:在CT三维重建上测量重度先天性脊柱侧凸的Cobb角,可以减小测量的误差,提高测量的可重复性和可靠性,是一种相对准确的测量方法。  相似文献   

2.
Increased posterior-inferior directed slope of the subchondral bone of the lateral tibial plateau is a risk factor for noncontact rupture of the anterior cruciate ligament (ACL). Previous measures of lateral tibial slope, however, vary from study to study and often lack documentation of their accuracy. These factors impede identifying the magnitude of lateral tibial slope that increases risk of noncontact ACL rupture. Therefore, we developed and evaluated a new method that (1) requires minimal user input; (2) employs 3D renderings of the tibia that are referenced to a 3D anatomic coordinate system; and (3) is precise, reliable, and accurate. The user first isolated the proximal tibia from computed tomography (CT) scans. Then, the algorithm placed the proximal tibia in an automatically generated tibial coordinate system. Next, it identified points along the rim of subchondral bone around the lateral tibial plateau, iteratively fit a plane to this rim of points, and, finally, referenced the plane to the tibial coordinate system. Precision and reliability of the lateral slope measurements were respectively assessed via standard deviation and intra- and inter-class correlation coefficients using CT scans of three cadaveric tibia. Accuracy was quantified by comparing changes in lateral tibial slope calculated by our algorithm to predefined in silico changes in slope. Precision, reliability, and accuracy were ≤0.18°, ≥0.998, and ≤0.13°, respectively. We will use our novel method to better understand the relationship between lateral tibial slope and knee biomechanics towards preventing ACL rupture and improving its treatment.  相似文献   

3.
Use of a shank shell has been shown to estimate tibial transverse rotations better than skin-mounted markers. However, the day-to-day reliability of the transverse tibial rotations using an individually molded shank shell has not been previously investigated. This study examined the between-tests and trials reliability of an individually molded shank shell for measuring peak tibial internal and external rotations, time of peak values, and tibia range of motion during 5 walking trials. The trial-to-trial reliability of tibial transverse rotations was measured in 14 healthy individuals while the test-retest reliability was measured in 10 persons on two occasions. Trial-to-trial reliability for peak transverse rotations, time of peak values, and tibia range of motion ranged from ICC (3,1) 0.59-0.95. The PCA between trials showed that 88-99 % of values were within 3 degrees of agreement. Test-retest reliability for peak rotations, tibia range of motion, and time of peak values ranged from ICC (3,1) 0.70-0.89 with SEM 1.6-2.21 degrees , 0.021 %, and 0.034 %, respectively. The PCA between tests showed that 70-100 % of values were within 3 degrees of agreement. The use of an individually molded shell and the close attachment of the shank shell to the individual's shank resulted in reliable test-retest and trial-to-trial data.  相似文献   

4.
This study investigated the effects of green tea polyphenols (GTP) and alfacalcidol on bone microstructure and strength along with possible mechanisms in rats with chronic inflammation. A 12-week study using a 2 (no GTP vs. 0.5%, w/v GTP in drinking water)×2 (no alfacalcidol vs. 0.05 μg/kg alfacalcidol orally, 5×/week) factorial design was employed in lipopolysaccharide (LPS)-administered female rats. A group receiving placebo administration was used to compare with a group receiving LPS administration only to evaluate the effect of LPS. Changes in tibial and femoral microarchitecture and strength of femur were evaluated. Difference in expression of tumor necrosis factor-α (TNF-α) in proximal tibia using immunohistochemistry was examined. Compared to the placebo group, the LPS-administered-only group had significantly lower femoral mass, trabecular volume, thickness and number in proximal tibia and femur, and lower periosteal bone formation rate in tibial shafts but had significantly higher trabecular separation and osteoclast number in proximal tibia and eroded surface in endocortical tibial shafts. Both GTP and alfacalcidol reversed these LPS-induced detrimental changes in femur, proximal tibia and endocortical tibial shaft. Both GTP and alfacalcidol also significantly improved femoral strength, while significantly suppressed TNF-α expression in proximal tibia. There were significant interactions in femoral mass and strength, trabecular separation, osteoclast number and TNF-α expression in proximal tibia. A combination of both showed to sustain bone microarchitecture and strength. We conclude that a protective impact of GTP and alfacalcidol in bone microarchitecture during chronic inflammation may be due to a suppression of TNF-α.  相似文献   

5.
External load at the tibia during activities of daily living provides baseline measures for the improvement of the design of the bone–implant interface for relevant internal and external prostheses. A motion analysis system was used together with an established protocol with skin markers to estimate three-dimensional forces and moments acting on ten equidistant points along the tibial shaft. Twenty young and able-bodied volunteers were analysed while performing three repetitions of the following tasks: level walking at three different speeds, in a straight-line and with sudden changes of direction to the right and to the left, stair ascending and descending, squatting, rising from a chair and sitting down. Moment and force patterns were normalised to the percentage of body weight per height and body weight, respectively, and then averaged over all subjects for each point, about the three tibial anatomical axes, and for each task. Load patterns were found to be consistent over subjects, but different among the anatomical axes, tasks and points. Generally, moments were higher in the medio/lateral axis and influenced by walking speed. In all five walking tasks and in ascending stairs with alternating feet, the more proximal the point was the smaller the mean moment was. For the remaining tasks the opposite trend was observed. The overall largest value was observed in the medio/lateral direction at the ankle centre in level walking at high speed (9.1% body weight * height on average), nearly three times larger than that of the anterior/posterior axis (2.9) during level walking with a sidestep turn. The present results should be of value also for in-vitro mechanical tests and finite element models.  相似文献   

6.
Unlike the case with total knee arthroplasty, the femorotibial angle (FTA) after unicompartmental knee arthroplasty (UKA) does not directly depend on the inclination of the tibial component when the height of the joint line is maintained. This study analyzed the effects of the inclination of the tibial component in the coronal plane on the contact pressure of the implant-bone surface and the stresses on the proximal tibia. A two-dimensional, coronal plane model of the proximal tibia was subjected to finite-element analysis. Sixteen patterns of finite-element models of equal FTA were developed in which the inclination of tibial components ranged from 5 degrees valgus to 10 degrees varus in increments of 1 degrees. Stress concentration at the proximal medial diaphyseal cortex gradually increased as the inclination changed from valgus to varus. Maximum contact pressure on the metal-bone interface similarly changed and shifted from the lateral edge to the medial edge of the implant as the inclination changed to varus. It was found that even without changing FTA, the inclination of the tibial component might affect stress concentration and contact pressure in the proximal tibia after UKA. The results suggested that slight valgus inclination of the tibial component might be preferable to varus and even to 0 degrees (square) inclination so far as the stress distribution is concerned.  相似文献   

7.
PurposeTo establish intra- and inter-session reliability of high-density surface electromyography (HDEMG)-derived parameters from the thoracic erector spinae (ES) during static and dynamic goal-directed voluntary movements of the trunk, and during functional reaching tasks.MethodsTwenty participants performed: 1) static trunk extension, 2) dynamic trunk forward and lateral flexion, and 3) multidirectional functional reaching tasks on two occasions separated by 7.5 ± 1.2 days. Muscle activity was recorded bilaterally from the thoracic ES. Root mean square (RMS), coordinates of the barycentre, mean frequency (MNF), and entropy were derived from the HDEMG signals. Reliability was determined with intraclass correlation coefficient (ICC), coefficient of variation, and standard error of measurement.ResultsGood-to-excellent intra-session reliability was found for all parameters and tasks (ICC: 0.79-0.99), whereas inter-session reliability varied across tasks. Static tasks demonstrated higher reliability in most parameters compared to functional and dynamic tasks. Absolute RMS and MNF showed the highest overall reliability across tasks (ICC: 0.66-0.98), while reliability of the barycentre was influenced by the direction of the movements.ConclusionRMS and MNF derived from HDEMG show consistent inter-session reliability in goal-directed voluntary movements of the trunk and reaching tasks, whereas the measures of the barycentre and entropy demonstrate task-dependent reliability.  相似文献   

8.
The area moment of inertia of the tibia: A risk factor for stress fractures   总被引:1,自引:0,他引:1  
In a prospective study of stress fractures among Israeli infantry recruits, the area moment of inertia of the tibia was found to have a statistically significant correlation with the incidence of tibial, femoral and total stress fractures. Recruits with "low" area moments of inertia of the tibia were found to have higher stress fracture morbidity than those with "high" area moments of inertia. The best correlation was obtained when the area moment of inertia was calculated about the AP axis of bending at a cross-sectional level corresponding to the narrowest tibial width on lateral X-rays, a point which is at the distal quarter of the tibia. This finding indicates that bending forces about the approximate AP axis are an important causal factor for tibial and many other stress fractures. The bone's bending strength, or ability to resist bending moments, as measured by the area moment of inertia, helps determine risk to stress fracture.  相似文献   

9.
Joint space width (JSW) and narrowing (JSN) measurements on radiographs are currently the best way to assess disease severity or progression in hip osteoarthritis, yet we lack data regarding the most accurate and sensitive measurement technique. This study was conducted to determine the optimal radiograph and number of readers for measuring JSW and JSN. Fifty pairs of radiographs taken three years apart were obtained from patients included in a structure modification trial in hip osteoarthritis. Three radiographs were taken with the patient standing: pelvis, target hip anteroposterior (AP) and oblique views. Two trained readers, blinded to each other's findings, time sequence and treatment, each read the six radiographs gathered for each patient twice (time interval ≥15 days), using a 0.1 mm graduated magnifying glass. Radiographs were randomly coded for each reading. The interobserver and intraobserver cross-sectional (M0 and M36) and longitudinal (M0–M36) reproducibilities were assessed using the intraclass coefficient (ICC) and Bland–Altman method for readers 1 and 2 and their mean. Sensitivity to change was estimated using the standardized response mean (SRM = change/standard deviation of change) for M0–M36 changes. For interobserver reliability on M0–M36 changes, the ICCs (95% confidence interval [CI]) were 0.79 (0.65–0.88) for pelvic view, 0.87 (0.78–0.93) for hip AP view and 0.86 (0.76–0.92) for oblique view. Intraobserver reliability ICCs were 0.81 (0.69–0.89) for observer 1 and 0.97 (0.95–0.98) for observer 2 for the pelvic view; 0.87 (0.78–0.92) and 0.97 (0.96–0.99) for the hip AP view; and 0.73 (0.57–0.84) and 0.93 (0.88–0.96) for the oblique view. SRMs were 0.61 (observer 1) and 0.82 (observer 2) for pelvic view; 0.64 and 0.75 for hip AP view; and 0.77 and 0.70 for oblique view. All three views yielded accurate JSW and JSN. According to the best reader, the pelvic view performed slightly better. Both readers exhibited high precision, with SRMs of 0.6 or greater for assessing JSN over three years. Selecting a single reader was the most accurate method, with 0.3 mm precision. Using this cutoff, 50% of patients were classified as 'progressors'.  相似文献   

10.
Abstract

Quantitative computed tomography-based finite element (QCT-FE) modeling has potential to clarify the role of altered subchondral bone stiffness in osteoarthritis. The objective of this research was to evaluate different QCT-FE modeling and thresholding approaches to identify the method which best predicted experimentally measured local subchondral structural stiffness with highest explained variance and least error. Our results showed that separate modeling of proximal tibial cortical and trabecular bone offered little improvement in QCT-FE-predicted stiffness (0% to +3% improvement in explained variance) when compared to modeling the proximal tibia as a single structure. Based on the results of this study, we do not recommend separate modeling of cortical bone and trabecular bone when developing QCT-FE models of the proximal tibia for predicting subchondral bone stiffness.  相似文献   

11.
There is disagreement as to whether clinical methods of caries diagnosis will produce reliable results in skeletal material, and studies vary greatly in the extent to which such methods are employed. The purpose of this study is, therefore, to evaluate the interobserver reliability of visual, tactile, and radiographic methods of scoring dental caries in ancient populations. Thirty-three individuals from a Mogollon skeletal sample were scored on three occasions by pairs of examiners. The first exam employed visual criteria alone. In the second exam, visual methods were supplemented with the dental explorer. For the third exam, mesial and distal surfaces were scored from “intraoral” radiographs. Examiners worked independently, but did calibrate on material from clinical populations prior to the second and third exams. Exams were conducted on a “blind” basis, and analysis was delayed until all exams were completed. Caries scores were expressed as a percentage of total surfaces present per individual. Repeat-measures ANOVA and intraclass correlation coefficients (ICC) were used to estimate interobserver reliabilities. For visual scores, ICC = 0.97, and there is no significant difference between examiners (P = 0.897). For visual plus explorer scores, ICC drops to 0.90, and there is a significant difference between examiners (P = 0.003). For the radiographs, ICC = 0.86, and there is no significant difference between observers (P = 0.117). These results suggest that clinical methods are less reliable in skeletal populations. Probable sources of error include postmortem dehydration of carious dentin, confusing radiolucencies engendered by worn or fractured enamel, and inadequate radiologic standards for root caries. These problems can be avoided through reliance on visual criteria.  相似文献   

12.

Background

To assess the reliability of fetal heart volume measurement by three-dimensional sonography (3DUS) using the eXtended Imaging Virtual Organ Computer-aided AnaLysis (XI VOCAL) method.

Methods

This reliability study enrolled 30 pregnant women with singleton healthy pregnancies between 19 and 34 weeks of gestation. All volume acquirements were performed with a convex volumetric transducer (C3-7ED) coupled to an Accuvix XQ sonography device (Medison, Korea). The XI VOCAL 10 planes was the method of choice for volumetric measurement. 3D datasets were analyzed by two observers (EQSB and HJFM); fetal heart volume was measured twice by the first and once by the second observer to calculate intra and interobserver reproducibility. Statistical analysis used pareated Student's t test (p) and calculated Intraclass correlation coefficients (ICC). Bland-Altman plots were also constructed.

Results

We observed an excellent intra- and interobserver reliability for fetal cardiac volume assessed by XI VOCAL. For the intraobserver the ICC was 0.998 (95% CI: 0.997; 0.999), with mean of differences of 0.12 cm3 (95% limits of agreement: -0.84; +0.84; p = 0.130). For interobserver the ICC was 0.899 (95%CI: 0.996; 0.998), mean of differences 0.05 cm3 (95% limits of agreement: -0.84; +0.84; p = 0.175).

Conclusion

Fetal cardiac volume assessed by 3DUS using XI VOCAL method is highly reproducible between 19 to 34 gestational weeks.  相似文献   

13.
The intraclass correlation coefficient (ICC) is a classical index of measurement reliability. With the advent of new and complex types of data for which the ICC is not defined, there is a need for new ways to assess reliability. To meet this need, we propose a new distance‐based ICC (dbICC), defined in terms of arbitrary distances among observations. We introduce a bias correction to improve the coverage of bootstrap confidence intervals for the dbICC, and demonstrate its efficacy via simulation. We illustrate the proposed method by analyzing the test‐retest reliability of brain connectivity matrices derived from a set of repeated functional magnetic resonance imaging scans. The Spearman‐Brown formula, which shows how more intensive measurement increases reliability, is extended to encompass the dbICC.  相似文献   

14.
A three-dimensional finite element analysis of the upper tibia   总被引:1,自引:0,他引:1  
A three-dimensional finite element model of the proximal tibia has been developed to provide a base line for further modeling of prosthetic resurfaced tibiae. The geometry for the model was developed by digitizing coronal and transverse sections made with the milling machine, from one fresh tibia of average size. The load is equally distributed between the medial and lateral compartments over contact areas that were reported in the literature. An indentation test has been used to measure the stiffness and the ultimate strength of cancellous bone in four cadaver tibiae. These values provided the statistical basis for characterising the inhomogeneous distribution of the cancellous bone properties in the proximal tibia. All materials in the model were assumed to be linearly elastic and isotropic. Mechanical properties for the cortical bone and cartilage have been taken from the literature. Results have been compared with strain gage tests and with a two-dimensional axisymmetric finite element model both from the literature. Qualitative comparison between trabecular alignment, and the direction of the principal compressive stresses in the cancellous bone, showed a good relationship. Maximum stresses in the cancellous bone and cortical bone, under a load which occurs near stance phase during normal gait, show safety factors of approximately eight and twelve, respectively. The load sharing between the cancellous bone and the cortical bone has been plotted for the first 40 mm distally from the tibial eminence.  相似文献   

15.
The blood supply of the periosteum of the human tibia was investigated by anatomical dissection of 12 lower extremities which were filled with injection mass. By division of the tibia into 4 segments (proximal and distal fifths; proximal and distal diaphysis) a general supplying system of the periosteum was found. The proximal fifth of the tibial periosteum is nourished by branches of the arteriae recurrentes tibiales anterior et posterior and the aa. inferiores medialis et lateralis genus. At the proximal diaphysis (next three tenths of the tibia) periosteal branches arise from the aa. tibialis anterior and posterior, whereas the distal diaphysis is nourished exclusively by semicircular vessels of the a. tibialis anterior which twine around the bone and merge with each other at the facies medialis. Concerning the periosteal blood supply of the distal fifth of the tibia, two different types were found. In two thirds of the cases the lateral side was nourished by branches of the a. tibialis anterior, which are supported by vessels from the a. fibularis. In one third the latter branch was absent so that the rami periostales arising from the a. tibialis anterior nourished the lateral aspect of the distal tibia alone. The dorsal region was supplied in all cases by rami of the a. fibularis and a. tibialis posterior. On the medial side the periosteal nourishment is ensured only by anastomosis. Branches of the a. tibialis anterior supply the facies lateralis and facies posterior where it is supported by vessels of the a. tibialis posterior and in a minor region of rami of the a. fibularis (distal) and a. poplitea (proximal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
PurposeThis study examined the reliability of patellar tendon cross sectional area (CSA) measurement using brightness mode ultrasonography.MethodsThe patellar tendon CSA of fourteen participants was examined on two different days and at three different positions (proximal, median and distal). Five trials per day were conducted in each position, replacing the ultrasound probe on every trial. The images were examined by three different and equally experienced observers. We compared the mean of the five trials in each position to examine the day, observer and position effect. Further, Bland and Altman plots, root mean square (RMS) differences and intraclass correlation coefficients (ICC) were calculated.ResultsThere was a significant (p < 0.05) day, observer and position effect on the CSA, while the average ICC was 0.592. The Bland and Altman plots showed that differences between conditions or groups, should be in average lower than 37% or higher than 55% of the patellar tendon CSA to be important for clinical or intervention studies.ConclusionOur findings show low reliability of the method, which resulted from the low clarity and unclear visibility of tissue boundaries in the ultrasound images. Therefore, the measurement of the CSA of the patellar tendon using ultrasound does not provide accurate and reliable results.  相似文献   

17.
The effect of femoral component malrotation on patellar biomechanics   总被引:1,自引:0,他引:1  
Patellofemoral complications are among the important reasons for revision knee arthroplasty. Femoral component malposition has been implicated in patellofemoral maltracking, which is associated with anterior knee pain, subluxation, fracture, wear, and aseptic loosening. Rotating-platform mobile bearings compensate for malrotation between the tibial and femoral components and may, therefore, reduce any associated patellofemoral maltracking. To test this hypothesis, we developed a dynamic model of quadriceps-driven open-kinetic-chain extension in a knee implanted with arthroplasty components. The model was validated using tibiofemoral and patellofemoral kinematics and forces measured in cadaver knees. Knee kinematics and patellofemoral forces were measured after simulating malrotation (±3°) of the femoral component. Rotational alignment of the femoral component affected tibial rotation near full extension and tibial adduction at higher flexion angles. External rotation of the femoral component increased patellofemoral lateral tilt, lateral shift, and lateral shear forces. Up to 21° of bearing rotation relative to the tibia was noted in the rotating-bearing condition. However, the rotating bearing had minimal effect in reducing the patellofemoral maltracking or shear induced by femoral component rotation. The rotating platform does not appear to be forgiving of malalignment of the extensor mechanism resulting from femoral component malrotation. These results support the value of improving existing methodologies for accurate femoral component alignment in total knee arthroplasty.  相似文献   

18.
The purpose of this study was to examine the reliability of normalisation methods used in the study of the posterior and posterolateral neck muscles in a group of healthy controls. Six asymptomatic male subjects performed a total of 12 maximum voluntary isometric contractions (MVIC) and 60%-submaximal isometric contractions (60%-MVIC) against the torque arm of an isokinetic dynamometer whilst surface and intramuscular electromyography (EMG) was recorded unilaterally from representative posterior and posterolateral locations. Reliability was calculated using intra-class correlation coefficient (ICC), relative standard error of measurement (%SEM) and relative coefficient of variation (%CV). Maximal torque output was found to be highly reliable in the directions of extension and right lateral bending when the first of three MVIC contractions was excluded. When averaged across contraction direction, high reliability was found for both surface (MVIC: ICC=0.986, %SEM=7.5, %CV=9.2; 60%-MVIC: ICC=0.975, %SEM=10, %CV=13.7) and intramuscular (MVIC: ICC=0.910, %SEM=20, %CV=19.1; 60%-MVIC: ICC=0.952, %SEM=16.5, %CV=13.5) electrodes. Intramuscular electrodes displayed the least reliability in right lateral bending. The use of visual feedback markedly increased the reliability of 60%-MVIC contractions.  相似文献   

19.
Patient-specific finite element models of the implanted proximal femur can be built from pre-operative computed tomography scans and post-operative X-rays. However, estimating three-dimensional positioning from two-dimensional radiographs introduces uncertainty in the implant position. Further, accurately measuring the thin cement mantle and the degree of cement–bone interdigitation from imaging data is challenging. To quantify the effect of these uncertainties in stem position and cement thickness, a sensitivity study was performed. A design-of-experiment study was implemented, simulating both gait and stair ascent. Cement mantle stresses and bone–implant interface strains were monitored. The results show that small variations in alignment affect the implant biomechanics, especially around the most proximal and most distal ends of the stem. The results suggest that implant position is more influential than cement thickness. Rotation around the medial–lateral axis is the dominant factor in the proximal zones and stem translations are the dominant factors around the distal tip.  相似文献   

20.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号