首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transplacental transfer of maternal fatty acids is critical for fetal growth and development. In the placenta, a preferential uptake of fatty acids toward long-chain polyunsaturated fatty acids (LCPUFAs) has been demonstrated. Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that has been ascribed a role in cellular fatty acid uptake and storage. However, its role in placenta is not known. We demonstrate that ADRP mRNA and protein are regulated by fatty acids in a human placental choriocarcinoma cell line (BeWo) and in primary human trophoblasts. LCPUFAs of the n-3 and n-6 series [arachidonic acid (20:4n-6), docosahexaenoic acid (22:6n-3), and eicosapentaenoic acid (20:5n-3)] were more efficient than shorter fatty acids at stimulating ADRP mRNA expression. The fatty acid-mediated increase in ADRP mRNA expression was not related to the differentiation state of the cells. Synthetic peroxisome proliferator-activated receptor and retinoic X receptor agonists increased ADRP mRNA level but had no effect on ADRP protein level in undifferentiated BeWo cells. Furthermore, we show that incubation of BeWo cells with LCPUFAs, but not synthetic agonists, increased the cellular content of radiolabeled oleic acid, coinciding with the increase in ADRP mRNA and protein level. These studies provide new information on the regulation of ADRP in placental trophoblasts and suggest that LCPUFA-dependent regulation of ADRP could be involved in the metabolism of lipids in the placenta.  相似文献   

2.
Placental fatty acid transport and metabolism are important for proper growth and development of the feto-placental unit. The nuclear receptors, liver X receptors α and β (LXRα and LXRβ), are key regulators of lipid metabolism in many tissues, but little is known about their role in fatty acid transport and metabolism in placenta. The current study investigates the LXR-mediated regulation of long-chain acyl-CoA synthetase 3 (ACSL3) and its functions in human placental trophoblast cells. We demonstrate that activation of LXR increases ACSL3 expression, acyl-CoA synthetase activity, and fatty acid uptake in human tropholast cells. Silencing of ACSL3 in these cells attenuates the LXR-mediated increase in acyl-CoA synthetase activity. Furthermore, we show that ACSL3 is directly regulated by LXR through a conserved LXR responsive element in the ACSL3 promoter. Our results suggest that LXR plays a regulatory role in fatty acid metabolism by direct regulation of ACSL3 in human placental trophoblast cells.  相似文献   

3.
4.
Normal human skin fibroblasts and those from methylmalonic acidemia and propionic acidemia patients were grown in culture. Following incubation with [1-14C]propionate, the major lipid classes in the cells were separated by thin layer chromatography and isolated fractions analyzed by radio gas chromatography for the presence of odd-numbered long-chain fatty acids; the pattern of even-numbered long-chain fatty acids was obtained also. Normal fibroblasts incorporated a small percentage of propionate into odd-numbered fatty acids which were present in all lipids studied. The abnormal cells incorporated a larger amount while maintaining the characteristic ratios of odd-numbered fatty acids found in the normal line. Most of the radioactivity was associated with phospholipids which are the predominant constituents of cell membranes. A characteristic C15/C17 ratio was found for different phospholipids and the triglyceride fraction; pentadecanoic acid was the principal odd-numbered fatty acid utilized in the assembly of complex lipids. Compared to even-numbered long-chain fatty acids the absolute amount of odd-numbered fatty acids was low (1-2%), even in affected cells. An unusual polar lipid fraction was isolated in the course of the study. In the normal cell it contained several unlabeled eicosanoids which were missing from the same fraction of both affected cell lines.  相似文献   

5.
Acyl-CoA synthetases play a pivotal role in fatty acid metabolism, providing activated substrates for fatty acid catabolic and anabolic pathways. Acyl-CoA synthetases comprise numerous proteins with diverse substrate specificities, tissue expression patterns, and subcellular localizations, suggesting that each enzyme directs fatty acids toward a specific metabolic fate. We reported that hBG1, the human homolog of the acyl-CoA synthetase mutated in the Drosophila mutant "bubblegum," belongs to a previously unidentified enzyme family and is capable of activating both long- and very long-chain fatty acid substrates. We now report that when overexpressed, hBG1 can activate diverse saturated, monosaturated, and polyunsaturated fatty acids. Using in situ hybridization and immunohistochemistry, we detected expression of mBG1, the mouse homolog of hBG1, in cerebral cortical and cerebellar neurons and in steroidogenic cells of the adrenal gland, testis, and ovary. The expression pattern and ability of BG1 to activate very long-chain fatty acids implicates this enzyme in the pathogenesis of X-linked adrenoleukodystrophy. In neuron-derived Neuro2a cells, mBG1 co-sedimented with mitochondria and was found in small vesicular structures located in close proximity to mitochondria. RNA interference was used to decrease mBG1 expression in Neuro2a cells and led to a 30-35% decrease in activation and beta-oxidation of the long-chain fatty acid, palmitate. These results suggest that in Neuro2a cells, mBG1-activated long-chain fatty acids are directed toward mitochondrial degradation. mBG1 appears to play a minor role in very long-chain fatty acid activation in these cells, indicating that other acyl-CoA synthetases are necessary for very long-chain fatty acid metabolism in Neuro2a cells.  相似文献   

6.
Placental transport of long chain polyunsaturated fatty acids is important for fetal growth and development. In order to examine the effects of leptin and insulin on fatty acid uptake by the placenta, placental choriocarcinoma (BeWo) cells were used. BeWo cells were incubated for 5h at 37 degrees C in the absence or presence of different concentrations of insulin (0.6, 60, and 100 ng) or leptin (10 ng) with 200 microM of various radiolabeled fatty acids (docosahexaenoic acid, arachidonic acid, eicosapentaenoic acid, and oleic acid, mixed with 1:1 bovine serum albumin (fat free). After incubation, the uptake and distribution of these fatty acids into different cellular lipid fractions were determined. The uptakes of oleic, eicosapentaenoic, arachidonic, and docosahexaenoic acids were 15.36+/-4.1, 19.95+/-3.6, 28.56+/-8.1, and 62.25+/-9.5 nmol/mg of protein, respectively, in BeWo cells. Incubation of these cells with insulin (0.6 or 60 ng/ml) or leptin (10 ng/ml) did not significantly alter uptake of any of these fatty acids (P>0.5). Insulin or leptin also did not affect beta oxidation of fatty acids in these cells. In contrast, leptin (10 ng/ml) and insulin (0.60 ng/ml)) stimulated the uptake of oleic acid (7.4+/-2.3 nmol/mg protein) in human adipose cells, SGBS cells by 1.28- and 2.48-fold (P<0.05), respectively. The distribution of fatty acids in different cellular lipid fractions was also not affected by these hormones. Our data indicate that unlike adipose tissue, fatty acid uptake and metabolism in placental trophoblasts is not regulated by insulin or leptin.  相似文献   

7.
The determination of placental fatty acid metabolism using stable isotope-labeled tracers was investigated in the human placental choriocarcinoma (JAR) cell line. Stable isotope incorporation was measured by MDGC-MS. The cultured trophoblast cells incorporated and metabolized the essential fatty acids to long-chain polyunsaturated fatty acids. The described method enables the detection of a low Delta(6)-desaturase activity in this human placental cell line. The developed MDGC-MS method allows the assessment of long-chain polyunsaturated fatty acid biosynthesis in cultured cells with high sensitivity and selectivity. In this respect, tracer studies with MDGC-MS will be a powerful tool to clarify the significance of placental fatty acid metabolism.  相似文献   

8.
肌肉(骨骼肌)组织对脂肪酸的利用水平是影响机体能量稳态的关键因素.肌肉摄取的长链脂肪酸(long chain fatty acids,LCFAs)主要依赖细胞膜载体蛋白协助的跨膜转运过程.近年来,一系列与脂肪酸转运相关的膜蛋白被相继克隆鉴定,其中在肌肉中大量表达的有脂肪酸转运蛋白-1(fatty acid transport protein-1,FATP-1)、膜脂肪酸结合蛋白(plasma membrane fatty acid binding protein,FABPpm)、脂肪酸转位酶(fatty acid translocase,FAT/CD36)和小窝蛋白-1(caveolin-1).研究上述肌肉脂肪酸转运膜蛋白的结构功能、调控机制及相互关系,可能为肥胖等脂类代谢紊乱疾病的诊治提供新的手段.  相似文献   

9.
Summary Although fatty acid uptake by the myocardium is rapid and efficient, the mechanism of their transmembrane transport has been unclear. Fatty acids are presented to the plasma membrane of cardiomyocytes as albumin complexes within the plasma. Since albumin is not taken up by the cells, it was postulated that specific high affinity binding sites at the sarcolemma may mediate the dissociation of fatty acids from the albumin molecules, before they are transported into the cells. In studies with a representative long-chain fatty acid, oleate, it was in fact shown that fatty acids bind with high affinity to isolated plasma membranes of rat heart myocytes revealing a KD of 42 nM. Moreover, a specific membrane fatty acid-binding protein (MFABP) was isolated from these membranes. It had a molecular weight of 40 kD, an isoelectric point of 9.0, and lacked carbohydrate or lipid components. Binding to a specific membrane protein might represent the first step of a carrier mediated uptake process. Therefore, the uptake kinetics of oleate by isolated rat heart myocytes was determined under conditions where only cellular influx and not metabolism occurred. Uptake revealed saturation kinetics and was temperature dependent which were considered as specific criteria for a facilitated transport mechanism. For evaluation whether uptake is mediated by MFABP, the effect of a monospecific antibody to this protein on cellular influx of oleate was examined. Inhibition of uptake of fatty acids but not of glucose by the antibody to MFABP indicated the physiologic significance of this protein as transmembrane carrier in the cellular uptake process of fatty acids. Such a transporter might represent an important site for the metabolic regulation of fatty acid influx into the myocardium.  相似文献   

10.
In the accompanying paper (Wice et al., 1986) we reported that serum from chickens contains small molecular weight compounds that stimulate long-chain fatty acid oxidation ten fold or more in HeLa cells. Here we show that this response is not limited to specific sera or to specific target cells. The specificity of the metabolic response to these factors was also investigated. They had no effect on the following major pathways of HeLa cell metabolism: 1) the oxidation of the medium-chain fatty acid, octanoic acid, 2) the rate of glycolysis of glucose, 3) the flux of glucose carbon through the oxidative arm of the pentose cycle, 4) the entry of pyruvate into the citrate cycle, 5) the oxidation of glutamine carbon, 6) the utilization rate of oxygen or 7) the rate of fatty acid synthesis. Furthermore, the increased oxidation of long-chain fatty acids was not a result of an increased uptake into the cells. Thus, the serum factors appear to be very specific for the oxidation of long-chain fatty acids for energy. Since carnitine also stimulates long-chain fatty acid oxidation in these cells, it seems likely that these compounds either facilitate the activity of carnitine or provide the same function--presumably the transport of long-chain fatty acid into and out of the mitochondria.  相似文献   

11.
Fatty acids regulate angiogenesis although no such information is available in first trimester placental trophoblast cells despite the fact that angiogenesis is a critical step involving these cells in early placentation. We investigated effects of different fatty acids on angiogenesis, their uptake and metabolism and expression of lipid metabolic genes in first trimester placental trophoblast cells using HTR-8/SVneo cell line. Fatty acid uptake by these cells exhibited a saturable kinetics. Uptake of AA was consistently greater compared with that of EPA and DHA throughout the incubation period of 180 min. Use of triacsin C, an inhibitor of acyl-CoA synthetase, significantly inhibited fatty acid uptake as well as fatty acid induced cell proliferation in these cells. Angiogenic effect (as measured by tube formation) of these fatty acids was in the following order DHA>EPA>AA>OA. Angiogenic effect of these fatty acids (AA, EPA, OA) was significantly decreased in ANGPTL4 knocked down cells, indicating ANGPTL4 may be involved at least in part in fatty acid induced angiogenesis. In addition, these fatty acids altered expression of several lipid metabolic genes such as ADRP, FABP4, FABP3, and COX-2 those are involved in angiogenesis. All these data suggest that fatty acids regulate angiogenic processes in these cells via different mechanisms.  相似文献   

12.
Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.  相似文献   

13.
α-Synuclein (Snca) is an abundant small cytosolic protein (140 amino acids) that is expressed in the brain, although its physiological role is poorly defined. Consistent with its ubiquitous distribution in the brain, we and others have established a role for Snca in brain lipid metabolism and downstream events such as neuroinflammation. In astrocytes, Snca is important for fatty acid uptake and trafficking, where its deletion decreases 16:0 and 20:4n-6 uptake and alters targeting to specific lipid pools. Although Snca has no impact on 22:6n-3 uptake into astrocytes, it is important for its targeting to lipid pools. Similar results for fatty acid uptake from the plasma are seen in studies using whole mice coupled with steady-state kinetic modeling. We demonstrate in gene-ablated mice a significant reduction in the incorporation rate of 20:4n-6 into brain phospholipid pools due to reduced recycling of 20:4n-6 through the ER-localized long-chain acyl-CoA synthetases (Acsl). This reduction results in a compensatory increase in the incorporation rate of 22:6n-3 into brain phospholipids. Snca is also important for brain and astrocyte cholesterol metabolism, where its deletion results in an elevation of cholesterol and cholesteryl esters. This increase may be due to the interaction of Snca with membrane-bound enzymes involved in lipid metabolism such as Acsl. Snca is critical in modulating brain prostanoid formation and microglial activities. In the absence of Snca, microglia are basally activated and demonstrate increased proinflammatory cytokine secretion. Thus, Snca, through its modulation of brain lipid metabolism, has a critical role in brain inflammatory responses.  相似文献   

14.
Fatty acid utilization is initiated by fatty acid-CoA ligase, which converts free fatty acids into fatty acyl-CoA esters. We have cloned previously the human long-chain fatty acid-CoA ligase 4 (FACL4), which is a central enzyme in controlling the free arachidonic acid level in cells and thereby regulating eicosanoid production. We report here the expression of this gene in tissues, particularly in different parts of the brain. We found that FACL4 encoded a 75 kDa enzyme and that there was a modified translation product expressed in the brain. FACL4 was expressed in early stages of development with a significant amount of FACL4 mRNA detected in an E7 mouse embryo. In addition, FACL4 was highly expressed in both adult and newborn mouse brain especially in the granule cells of the dentate gyrus and the pyramidal cell layer of CA1 in hippocampus, and the granular cell layer and Purkinje cells of the cerebellum.  相似文献   

15.
16.
The fatty acid patterns of Euonymus europaeus callus cultures and cell suspension cultures were analysed at the beginning of stationary growth phase and compared with those from the respective differentiated tissues. The lipid and fatty acid patterns in cell cultures differed remarkably from those in the tissues of the mother plant. No glycerol triacetate was detected in the callus cultures derived from differentiated tissues whereas in seeds this lipid compound amounts to 29%. In addition to fatty acids normally occurring in differentiated tissues, lipids in cultured cells also contained short-chain (C12–C14) as well as very long-chain fatty acids (C20–C24). In tissue culture cells the major fatty acids were found to be saturated, whereas in the mother cells unsaturated fatty acids were predominant. Palmitic acid is the most abundant fatty acid in most of the cultures. Lauric, myristic and palmitic acid amount to 50% in lipids of cell suspension cultures.  相似文献   

17.
Free fatty acids can enter the enterocyte via the apical or basolateral plasma membrane. We have used the Caco-2 intestinal cell line to examine the polarity of free fatty acid uptake and metabolism in the enterocyte. Differentiated Caco-2 cells form polarized monolayers with tight junctions, and express the small intestine-specific enzymes sucrase and alkaline phosphatase. Cells were grown on permeable polycarbonate Transwell filters, thus allowing separate access to the apical and basolateral compartments. Total uptake of [3H]palmitate bound to bovine serum albumin (palmitate-BSA 4:1) was twofold higher (P less than 0.05 or less) at the apical surface than at the basolateral surface. The relative apical and basolateral membrane surface areas of the Caco-2 cells, as measured by partition of the fluorophore trimethylammonium-diphenylhexatriene TMA-DPH), was found to be 1:3. Thus, apical fatty acid uptake was sixfold higher than basolateral uptake per unit surface area. Analysis of metabolites after incubation with submicellar concentrations of [3H]palmitate showed that the triacylglycerol to phospholipid (TG:PL) ratio was higher for fatty acid added to the apical as compared to the basolateral compartment (20% at 60 min, P less than 0.025). Little fatty acid oxidation was observed. Preincubation with albumin-bound palmitate, alone or with monoolein, increased the incorporation of both apical and basolateral free fatty acids into TG. The results suggest that the net uptake of long-chain free fatty acids across the apical plasma membrane is greater than uptake across the basolateral membrane. In addition, a small increase in the TG:PL ratio for apically, compared to basolaterally, added free fatty acids suggests that polarity of metabolism occurs to a limited extent in Caco-2 enterocytes.  相似文献   

18.
Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5–200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.  相似文献   

19.
Evidence is accumulating that cellular lipid binding proteins are playing central roles in cellular lipid uptake and metabolism. Membrane-associated fatty acid-binding proteins putatively function in protein-mediated transmembrane transport of fatty acids, likely coexisting with passive diffusional uptake. The intracellular trafficking of fatty acids, bile acids, and other lipid ligands, may involve their interaction with specific membrane or protein targets, which are unique properties of some but not of all cytoplasmic lipid binding proteins. Recent studies indicate that these proteins not only facilitate but also regulate cellular lipid utilization. For instance, muscle fatty acid uptake is subject to short-term regulation by translocation of fatty acid translocase (FAT)/CD36 from intracellular storage sites to the plasma membrane, and liver-type cytoplasmic fatty acid-binding protein (L-FABPc) functions in long-term, ligand-induced regulation of gene expression by directly interacting with nuclear receptors. Therefore, the properties of the lipid-protein complex, rather than those of the lipid ligand itself, determine the fate of the ligand in the cell. Finally, there are an increasing number of reports that deficiencies or altered functioning of both membrane-associated and cytoplasmic lipid binding proteins are associated with disease states, such as obesity, diabetes and atherosclerosis. In conclusion, because of their central role in the regulation of lipid metabolism, cellular lipid binding proteins are promising targets for the treatment of diseases resulting from or characterised by disturbances in lipid metabolism, such as atherosclerosis, hyperlipidemia, and insulin resistance.  相似文献   

20.
We investigated the localization of nonspecific lipid transfer protein (nsLTP) in rat retina, especially in the pigment epithelial (RPE) cells, by the avidin-biotin-peroxidase complex method on cryosections for light microscopy and by the cryoimmunogold method for electron microscopy. Light microscopic observation revealed that the RPE, inner segment layer, nerve fiber layer, and Müller cells contain nsLTP. In the RPE cells gold particles were exclusively concentrated in the small peroxisomes (microperoxisomes; 0.1-0.3 micron in diameter), which were identified by double staining using anti-nsLTP and anti-catalase antibodies. In the peroxisomes gold particles were distributed homogeneously in the matrices and no preferential binding to the limiting membrane was observed. Acyl-CoA oxidase was also localized in the matrices of the peroxisomes. We suggest that the peroxisomes in RPE cells play important roles in the metabolism of lipids of the outer segment disk membranes, especially in the beta-oxidation of polyunsaturated long-chain and very long-chain fatty acids, such as docosahexaenoic acid which is composed of approximately one third of fatty acids in the disk membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号