首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of p53 is present in almost every tumor, and hence, p53-reactivation strategies are an important aspect of cancer therapy. Common mechanisms for p53 loss in cancer include expression of p53-negative regulators such as MDM2, which mediate the degradation of wildtype p53 (p53α), and inactivating mutations in the TP53 gene. Currently, approaches to overcome p53 deficiency in these cancers are limited. Here, using non–small cell lung cancer and glioblastoma multiforme cell line models, we show that two alternatively spliced, functional truncated isoforms of p53 (p53β and p53γ, comprising exons 1 to 9β or 9γ, respectively) and that lack the C-terminal MDM2-binding domain have markedly reduced susceptibility to MDM2-mediated degradation but are highly susceptible to nonsense-mediated decay (NMD), a regulator of aberrant mRNA stability. In cancer cells harboring MDM2 overexpression or TP53 mutations downstream of exon 9, NMD inhibition markedly upregulates p53β and p53γ and restores activation of the p53 pathway. Consistent with p53 pathway activation, NMD inhibition induces tumor suppressive activities such as apoptosis, reduced cell viability, and enhanced tumor radiosensitivity, in a relatively p53-dependent manner. In addition, NMD inhibition also inhibits tumor growth in a MDM2-overexpressing xenograft tumor model. These results identify NMD inhibition as a novel therapeutic strategy for restoration of p53 function in p53-deficient tumors bearing MDM2 overexpression or p53 mutations downstream of exon 9, subgroups that comprise approximately 6% of all cancers.  相似文献   

2.
3.
The p53 tumor suppressor is regulated by the MDM2 oncoprotein through a negative feedback mechanism. MDM2 promotes the ubiquitination and proteasome-dependent degradation of p53, possibly by acting as a ubiquitin ligase. In cervical cancer cells containing high-risk human papillomaviruses (HPV), p53 is also targeted for degradation by the HPV E6 oncoprotein in combination with the cellular E6-AP ubiquitin ligase. In this report, we describe the identification of efficient antisense oligonucleotides against human E6-AP. The roles of MDM2 and E6-AP in p53 regulation were investigated using a novel E6-AP antisense oligonucleotide and a previously characterized MDM2 antisense oligonucleotide. In HPV16-positive and HPV-18 positive cervical cancer cells, inhibition of E6-AP, but not MDM2, expression results in significant induction of p53. In HPV-negative tumor cells, p53 is activated by inhibition of MDM2 but not E6-AP. Furthermore, treatment with both E6-AP and MDM2 antisense oligonucleotides in HPV-positive cells does not lead to further induction of p53 over inhibition of E6-AP alone. Therefore, E6-AP-mediated degradation is dominant over MDM2 in cervical cancer cells but does not have a significant role in HPV-negative cells.  相似文献   

4.
5.
6.
CARP1 and CARP2 proteins (CARPs) are E3 ligases that target p53 as well as phospho-p53 for degradation. Because MDM2 is a critical regulator of p53 turnover, we investigated and found that CARPs associate with MDM2. We provide evidence that CARPs stabilize MDM2 by inhibiting MDM2 self-ubiquitination. CARPs together with MDM2 enhance p53 degradation, thereby inhibiting p53-mediated cell death. CARP protein levels correlate with MDM2 levels including under hypoxia where both are reduced. CARP2 was found to target 14-3-3σ for degradation, leading to MDM2 stabilization. MDMX, a homolog of MDM2, is not absolutely required for MDM2 stabilization by CARPs, although overexpression of CARP2 enhances MDM2/MDMX interaction. Taken together, our study identifies novel mechanisms by which CARP proteins regulate the p53 signaling pathway.  相似文献   

7.
8.
9.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

10.
Activation of the p53 protein protects the organism against the propagation of cells that carry damaged DNA with potentially oncogenic mutations. MDM2, a p53-specific E3 ubiquitin ligase, is the principal cellular antagonist of p53, acting to limit the p53 growth-suppressive function in unstressed cells. In unstressed cells, MDM2 constantly monoubiquitinates p53 and thus is the critical step in mediating its degradation by nuclear and cytoplasmic proteasomes. The interaction between p53 and MDM2 is conformation-based and is tightly regulated on multiple levels. Disruption of the p53-MDM2 complex by multiple routes is the pivotal event for p53 activation, leading to p53 induction and its biological response. Because the p53-MDM2 interaction is structurally and biologically well understood, the design of small lipophilic molecules that disrupt or prevent it has become an important target for cancer therapy.  相似文献   

11.
The MDM2 oncogene has both p53-dependent and p53-independent activities. We have previously reported that antisense MDM2 inhibitors have significant anti-tumor activity in multiple human cancer models with various p53 statuses (Zhang, Z., Li, M., Wang, H., Agrawal, S., and Zhang, R. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 11636-11641). We have also provided evidence that MDM2 has a direct role in the regulation of p21, a cyclin-dependent kinase inhibitor. Here we provide evidence supporting functional interaction between MDM2 and p21 in vitro and in vivo. The inhibition of MDM2 with anti-MDM2 antisense oligonucleotide or Short Interference RNA targeting MDM2 significantly elevated p21 protein levels in PC3 cells (p53 null). In contrast, overexpression of MDM2 diminished the p21 level in the same cells by shortening the p21 half-life, an effect reversed by MDM2 antisense inhibition. MDM2 facilitates p21 degradation independent of ubiquitination and the E3 ligase function of MDM2. Instead, MDM2 promotes p21 degradation by facilitating binding of p21 with the proteasomal C8 subunit. The physical interaction between p21 and MDM2 was demonstrated both in vitro and in vivo with the binding region in amino acids 180-298 of the MDM2 protein. In summary, we provide evidence supporting a physical interaction between MDM2 and p21. We also demonstrate that, by reducing p21 protein stability via proteasome-mediated degradation, MDM2 functions as a negative regulator of p21, an effect independent of both p53 and ubiquitination.  相似文献   

12.
Although MDM2 is known to be a critical negative regulator of p53, MDM2 only catalyzes p53 mono- or multiple monoubiquitination in vitro and in vivo, which is insufficient for the initiation of proteasomal degradation. MDM2 does not polyubiquitinate p53 in vitro, however, which indicates that the activity of other ubiquitin ligase(s) or cofactor(s) is required for MDM2-mediated p53 polyubiquitination and degradation. In our recent study, we demonstrated that UBE4B, an E3 and E4 ubiquitin ligase with a U-box domain, interacts physically with both p53 and MDM2. Our findings revealed that UBE4B negatively regulates the level of p53 and inhibits p53-dependent transactivation and apoptosis. We propose that inhibition of MDM2 binding to UBE4B may provide another approach to inhibit MDM2 E3 ligase activity for tumor suppressor p53. It could lead to novel anticancer therapies, with the possibility of reducing the public health burden from cancer.Key words: ubiquitination, MDM2, UBE4B, p53, degradation  相似文献   

13.
Regulation of p53 and MDM2 activity by MTBP   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

14.
MDM2 is an E3 ubiquitin ligase which mediates ubiquitylation and proteasome-dependent degradation of the p53 tumor suppressor protein. Phosphorylation of MDM2 by the protein kinase AKT is thought to regulate MDM2 function in response to survival signals, but there has been uncertainty concerning the identity of the sites phosphorylated by AKT. In the present study, we identify Ser-166, a site previously reported as an AKT target, and Ser-188, a novel site which is the major site of phosphorylation of MDM2 by AKT in vitro. Analysis of MDM2 in cultured cells confirms that Ser-166 and Ser-188 are phosphorylated by AKT in a physiological context.  相似文献   

15.
16.
17.
The E3 ubiquitin ligase, MDM2, uses a dual-site mechanism to ubiquitinate and degrade the tumor suppressor protein p53, involving interactions with the N-terminal hydrophobic pocket and the acidic domain of MDM2. The results presented here demonstrate that MDM2 also uses this same dual-site mechanism to bind to the cell fate determinant NUMB with both the N-terminal hydrophobic pocket and the acidic domain of MDM2 also involved in forming the interaction with NUMB. Furthermore, the acidic domain interactions are crucial for MDM2-mediated ubiquitination of NUMB. Contrary to p53, where two separate domains form the interface with MDM2, only one region within the phosphotyrosine binding domain of NUMB (amino acids 113-148) mediates binding to both these regions of MDM2. By binding to both domains on MDM2, NUMB disrupts the MDM2-p53 complex and MDM2-catalyzed ubiquitination of p53. Therefore, we have identified the mechanism NUMB uses to regulate the steady-state levels of the p53 in cells. By targeting the acidic domain of MDM2 using acid domain-binding ligands we can overcome MDM2-mediated ubiquitination and degradation of NUMB impacting on the stabilization of p53 in cells. Furthermore, delivery of MDM2 acid domain-binding ligands to cancer cells promotes p53-dependent growth arrest and the induction of apoptosis. This highlights the dual-site mechanism of MDM2 on another physiological substrate and identifies the acid domain as well as N terminus as a potential target for small molecules that inhibit MDM2.  相似文献   

18.
19.
20.
Jin Y  Lee H  Zeng SX  Dai MS  Lu H 《The EMBO journal》2003,22(23):6365-6377
The CDK inhibitor p21waf1/cip1 is degraded by a ubiquitin-independent proteolytic pathway. Here, we show that MDM2 mediates this degradation process. Overexpression of wild-type or ring finger-deleted, but not nuclear localization signal (NLS)-deleted, MDM2 decreased p21waf1/cip1 levels without ubiquitylating this protein and affecting its mRNA level in p53(-/-) cells. This decrease was reversed by the proteasome inhibitors MG132 and lactacystin, by p19(arf), and by small interfering RNA (siRNA) against MDM2. p21waf1/cip1 bound to MDM2 in vitro and in cells. The p21waf1/cip1-binding-defective mutant of MDM2 was unable to degrade p21waf1/cip1. MDM2 shortened the half-life of both exogenous and endogenous p21waf1/cip1 by 50% and led to the degradation of its lysine-free mutant. Consequently, MDM2 suppressed p21waf1/cip1-induced cell growth arrest of human p53(-/-) and p53(-/-)/Rb(-/-)cells. These results demonstrate that MDM2 directly inhibits p21waf1/cip1 function by reducing p21waf1/cip1 stability in a ubiquitin-independent fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号