首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transient versus sustained ERK MAP kinase (MAPK) activation dynamics induce proliferation versus differentiation in response to epidermal (EGF) or nerve (NGF) growth factors in PC‐12 cells. Duration of ERK activation has therefore been proposed to specify cell fate decisions. Using a biosensor to measure ERK activation dynamics in single living cells reveals that sustained EGF/NGF application leads to a heterogeneous mix of transient and sustained ERK activation dynamics in distinct cells of the population, different than the population average. EGF biases toward transient, while NGF biases toward sustained ERK activation responses. In contrast, pulsed growth factor application can repeatedly and homogeneously trigger ERK activity transients across the cell population. These datasets enable mathematical modeling to reveal salient features inherent to the MAPK network. Ultimately, this predicts pulsed growth factor stimulation regimes that can bypass the typical feedback activation to rewire the system toward cell differentiation irrespective of growth factor identity.  相似文献   

2.
Mechanical modulation of osteochondroprogenitor cell fate   总被引:1,自引:0,他引:1  
Mesenchymal cells are natural tissue builders. They exhibit an extraordinary capacity to metamorphize into differentiated cells, using extrinsic spatial and temporal inputs and intrinsic algorithms, as well as to build and adapt their own habitat. In addition to providing a habitat for osteoprogenitor cells, tissues of the skeletal system provide mechanical support and protection for the multiple organs of vertebrate organisms. This review examines the role of mechanics on determination of cell fate during pre-, peri- and postnatal development of the skeleton as well as during tissue genesis and repair in postnatal life. The role of cell mechanics is examined and brought into context of intrinsic cues during mesenchymal condensation. Remarkable new insights regarding structure function relationships in mesenchymal stem cells, and their influence on determination of cell fate are integrated in the context of de novo tissue generation and postnatal repair. Key differences in the formation of osteogenic and chondrogenic condensations are discussed in relation to direct intramembranous and indirect endochondral ossification. New approaches are discussed to elucidate and exploit extrinsic cues to generate tissues in the laboratory and in the clinic.  相似文献   

3.
We probed an epigenetic regulatory path from small molecule to neuronal gene activation. Isoxazole small molecules triggered robust neuronal differentiation in adult neural stem cells, rapidly signaling to the neuronal genome via Ca(2+) influx. Ca(2+)-activated CaMK phosphorylated and mediated nuclear export of the MEF2 regulator HDAC5, thereby de-repressing neuronal genes. These results provide new tools to explore the epigenetic signaling circuitry specifying neuronal cell fate and new leads for neuro-regenerative drugs.  相似文献   

4.
5.
6.
7.
8.
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.  相似文献   

9.
《Organogenesis》2013,9(4):217-226
An organism arises from the coordinate generation of different cell types and the stereotypical organization of these cells into tissues and organs. Even so, the dynamic behaviors, as well as the ultimate fates, of cells driving the morphogenesis of an organism, or even an individual organ, remain largely unknown. Continued innovations in optical imaging modalities, along with the discovery and evolution of improved genetically-encoded fluorescent protein reporters in combination with model organism, stem cell and tissue engineering paradigms are providing the means to investigate these unresolved questions. The emergence of fluorescent proteins whose spectral properties can be photomodulated is one of the most significant new developments in the field of cell biology where they are primarily used for studying protein dynamics in cells. Likewise, the use of photomodulatable fluorescent proteins holds great promise for use in developmental biology. Photomodulatable fluorescent proteins also represent attractive and emergent tools for studying cell dynamics in complex populations by facilitating the labeling and tracking of individual or defined groups of cells. Here, we review the currently available photomodulatable fluorescent proteins and their application in model organisms. We also discuss prospects for their use in mice, and by extension in embryonic stem cell and tissue engineering paradigms.  相似文献   

10.
An organism arises from the coordinate generation of different cell types and the stereotypical organization of these cells into tissues and organs. Even so, the dynamic behaviors, as well as the ultimate fates, of cells driving the morphogenesis of an organism, or even an individual organ, remain largely unknown. Continued innovations in optical imaging modalities, along with the discovery and evolution of improved genetically-encoded fluorescent protein reporters in combination with model organism, stem cell and tissue engineering paradigms are providing the means to investigate these unresolved questions. The emergence of fluorescent proteins whose spectral properties can be photomodulated is one of the most significant new developments in the field of cell biology where they are primarily used for studying protein dynamics in cells. Likewise, the use of photomodulatable fluorescent proteins holds great promise for use in developmental biology. Photomodulatable fluorescent proteins also represent attractive and emergent tools for studying cell dynamics in complex populations by facilitating the labeling and tracking of individual or defined groups of cells. Here, we review the currently available photomodulatable fluorescent proteins and their application in model organisms. We also discuss prospects for their use in mice, and by extension in embryonic stem cell and tissue engineering paradigms.Key words: fluorescent protein, photomodulation, photoactivation, photoconversion, mouse, live imaging, embryonic development, organogenesis, GFP, PA-GFP, PS-CFP, Kaede, KikGR  相似文献   

11.
It is supposed that human pathogens, e.g. Helicobacter pylori abuse lipid raft domains on the host cell plasma membrane to infect the cell. Investigating DRM-associated molecules we identified the transmembrane adapter proteins (TRAPs), non-T cell activation linker (NTAL) and lymphocyte-specific protein tyrosine kinase (Lck)-interacting membrane protein (LIME) to be regulated by H. pylori in the human epithelial cell line HCA-7. Up to now, raft-associated TRAPs were exclusively described to mediate signal propagation downstream of antigen receptors. Our results posed the question whether these proteins adopt a role in H. pylori-infected epithelial cells too. Our studies revealed that H. pylori induces tyrosine phosphorylation of NTAL as well as LIME within 15 min of infection. We observed that activated NTAL and LIME bind to the Src homology 2 (SH2)-domain of growth factor receptor-bound protein 2 (Grb2) within 15 to 30 min of infection and associate with the c-Met receptor. Further, NTAL has a contributory role in regulating H. pylori-induced extracellular signal-regulated kinase (ERK) activation. After suppression of NTAL protein levels by siRNA, ERK phosphorylation was reduced to approximately 50%. Additionally, the knockdown of NTAL suppressed the phosphorylation of cytosolic phospholipase A2 (cPLA2). Activated cPLA2 catalyzes the release of arachidonic acid (AA), whose metabolites are pivotal mediators in the H. pylori-induced inflammatory response. Thus, we propose that NTAL participates in the activation of the c-Met-Grb2-ERK-cPLA2 signalling cascade at early stages of H. pylori infection.  相似文献   

12.
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death. This work was supported by grant from Association pour la Recherche sur le Cancer (CNRS6543/ARC). S. Cagnol is supported by a fellowship from the Ligue Nationale contre le Cancer.  相似文献   

13.
Vascular Endothelial Growth Factor (VEGF) signal transduction is central to angiogenesis in development and in pathological conditions such as cancer, retinopathy and ischemic diseases. We constructed and validated a computational model of VEGFR2 trafficking and signaling, to study the role of receptor trafficking kinetics in modulating ERK phosphorylation in VEGF-stimulated endothelial cells. Trafficking parameters were optimized and validated against four previously published in vitro experiments. Based on these parameters, model simulations demonstrated interesting behaviors that may be highly relevant to understanding VEGF signaling in endothelial cells. First, at moderate VEGF doses, VEGFR2 phosphorylation and ERK phosphorylation are related in a log-linear fashion, with a stable duration of ERK activation; but with higher VEGF stimulation, phosphoERK becomes saturated, and its duration increases. Second, a large endosomal fraction of VEGFR2 makes the ERK activation reaction network less sensitive to perturbations in VEGF dosage. Third, extracellular-matrix-bound VEGF binds and activates VEGFR2, but by internalizing at a slower rate, matrix-bound VEGF-induced intracellular ERK phosphorylation is predicted to be greater in magnitude and more sustained, in agreement with experimental evidence. Fourth, different endothelial cell types appear to have different trafficking rates, which result in different levels of endosomal receptor localization and different ERK response profiles.  相似文献   

14.
To elucidate the hidden dynamics of extracellular-signal-regulated kinase (ERK) signalling networks, we developed a simulation model of ERK signalling networks by constraining in silico dynamics based on in vivo dynamics in PC12 cells. We predicted and validated that transient ERK activation depends on rapid increases of epidermal growth factor and nerve growth factor (NGF) but not on their final concentrations, whereas sustained ERK activation depends on the final concentration of NGF but not on the temporal rate of increase. These ERK dynamics depend on Ras and Rap1 dynamics, the inactivation processes of which are growth-factor-dependent and -independent, respectively. Therefore, the Ras and Rap1 systems capture the temporal rate and concentration of growth factors, and encode these distinct physical properties into transient and sustained ERK activation, respectively.  相似文献   

15.
16.
Recent reports suggest that extracellular signal-regulated kinase (ERK1) and ERK2 mitogen-activated protein kinases (MAPK) may direct specific biological functions under certain contexts. In this study, we investigated the role of early and sustained epidermal growth factor (EGF) stimulation on long-term hepatocyte differentiation and the possible role of ERK1 and ERK2 in this process. We demonstrate a long-term survival and an elevated level of differentiation up to 3 weeks. The differentiation state of hepatocytes is supported by sustained expression of aldolase B, albumin, and the detoxifying enzymes CYP1A2, 2B2, and 3A23. Similarly to freshly isolated cells, cultured hepatocytes also retain the ability to respond to 3-methylcholanthrene (3MC) and phenobarbital (PB), two known CYP inducers. In addition, we show evidence that continuous MAPK/ERK kinase (MEK) inhibition enhances the level of differentiation. Using RNA interference approaches against ERK1 and ERK2, we demonstrate that this effect requires both ERK1 and ERK2 activity, whereas the specific ERK1 knockdown promotes cell survival and the specific ERK2 knockdown regulates cell proliferation. In conclusion, we demonstrate that early and sustained EGF stimulation greatly extends long-term hepatocyte survival and differentiation, and that inhibition of the ERK1/2 MAPK pathway potentiates these pro-survival/pro-differentiation phenotypes. We clearly attest that specific ERK1 and ERK2 MAPKs determine hepatocyte survival and proliferation, respectively, whereas dual inhibition is required to stabilize a highly differentiated state.  相似文献   

17.
18.
19.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号