首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The drug molecule PTC124 (Ataluren) has been described as a read-through agent, capable of suppressing premature termination codons (PTCs) and restoring functional protein production from genes disrupted by nonsense mutations. Following the discovery of PTC124 there was some controversy regarding its mechanism of action with two reports attributing its activity to an off-target effect on the Firefly luciferase (FLuc) reporter used in the development of the molecule. Despite questions remaining as to its mechanism of action, development of PTC124 continued into the clinic and it is being actively pursued as a potential nonsense mutation therapy. To thoroughly test the ability of PTC124 to read through nonsense mutations, we conducted a detailed assessment comparing the efficacy of PTC124 with the classical aminoglycoside antibiotic read-through agent geneticin (G418) across a diverse range of in vitro reporter assays. We can confirm the off-target FLuc activity of PTC124 but found that, while G418 exhibits varying activity in every read-through assay, there is no evidence of activity for PTC124.  相似文献   

2.
alpha-L-Iduronidase is a glycosyl hydrolase involved in the sequential degradation of the glycosaminoglycans heparan sulphate and dermatan sulphate. A deficiency in alpha-L-iduronidase results in the lysosomal accumulation and urinary secretion of partially degraded glycosaminoglycans and is the cause of the lysosomal storage disorder mucopolysaccharidosis type I (MPS I; Hurler and Scheie syndromes; McKusick 25280). The premature stop codons Q70X and W402X are two of the most common alpha-l-iduronidase gene (IDUA) mutations accounting for up to 70% of MPS I disease alleles in some populations. Here, we have reported a new mutation, making a total of 15 different mutations that can cause premature IDUA stop codons and have investigated the biochemistry of these mutations. Natural stop codon read-through was dependent on the fidelity of the codon when evaluated at Q70X and W402X in CHO-K1 cells, but the three possible stop codons TAA, TAG and TGA, had different effects on mRNA stability and this effect was context dependent. In CHO-K1 cells expressing the Q70X and W402X mutations, the level of gentamicin-enhanced stop codon read-through was slightly less than the increment in activity caused by a lower fidelity stop codon. In this system, gentamicin had more effect on read-through for the TAA and TGA stop codons when compared to the TAG stop codon. In an MPS I patient study, premature TGA stop codons were associated with a slightly attenuated clinical phenotype, when compared to classical Hurler syndrome (e.g. W402X/W402X and Q70X/Q70X genotypes with TAG stop codons). Natural read-through of premature stop codons is a potential explanation for variable clinical phenotype in MPS I patients. Enhanced stop codon read-through is a potential treatment strategy for a large sub-group of MPS I patients.  相似文献   

3.
In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.  相似文献   

4.
In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.  相似文献   

5.
It has been reported that eukaryotic organisms have a nonsense-mediated mRNA decay (NMD) system to exclude aberrant mRNAs that produce truncated proteins. NMD is an RNA surveillance pathway that degrades mRNAs possessing premature translation termination codons (PTCs), thus avoiding production of possibly toxic truncated proteins. Three interacting proteins, UPF1, UPF2 and UPF3, are required for NMD in mammals and yeasts, and their amino acid sequences are well conserved among most eukaryotes, including plants. In this study, 'The Arabidopsis Information Resource' database was searched for mRNAs with premature termination codons. We selected five of these mRNAs and checked for the presence of PTCs in these mRNAs when translated in vivo. As a result we identified aberrant mRNAs produced by alternative splicing for each gene. These genes produced at least one alternative splicing variant including a PTC (PTC+) and another variant without a PTC (PTC-). We analyzed their PTC+/PTC- ratios in wild-type Arabidopsis and upf3 mutant plants and showed that the PTC+/PTC- ratios were higher in atupf3 mutant plants than wild-type plants and that the atupf3 mutant was less able to degrade mRNAs with premature termination codons than wild-type plants. This indicated that the AtUPF3 gene is required by the plant NMD system to obviate aberrantly spliced mRNA.  相似文献   

6.
Introducing sense into nonsense in treatments of human genetic diseases   总被引:1,自引:0,他引:1  
Approximately one-third of alleles causing genetic diseases carry premature termination codons (PTCs), which lead to the production of truncated proteins. The past decade has seen considerable interest in therapeutic approaches aimed at readthrough of in-frame PTCs to enable synthesis of full-length proteins. However, attempts to readthrough PTCs in many diseases resulted in variable effects. Here, we focus on the efforts of such therapeutic approaches in cystic fibrosis and Duchenne muscular dystrophy and discuss the factors contributing to successful readthrough and how the nonsense-mediated mRNA decay (NMD) pathway regulates this response. A deeper understanding of the molecular basis for variable response to readthrough of PTCs is necessary so that appropriate therapies can be developed to treat many human genetic diseases caused by PTCs.  相似文献   

7.
8.
Aberrant mRNAs harboring premature termination codons (PTCs or nonsense codons) are degraded by the nonsense-mediated mRNA decay (NMD) pathway. mRNAs transcribed from genes that naturally acquire PTCs during lymphocyte development are strongly downregulated by PTCs. Here we show that a signal essential for this robust mRNA downregulatory response is efficient RNA splicing. Strong mRNA downregulation can be conferred on a poor NMD substrate by either strengthening its splicing signals or removing its weak introns. Efficient splicing also strongly promotes translation, providing a molecular explanation for enhanced NMD and suggesting that efficient splicing may have evolved to enhance both protein production and RNA surveillance. Our results suggest simple approaches for increasing protein expression from expression vectors and treating human genetic diseases caused by nonsense and frameshift mutations.  相似文献   

9.
The nonsense-mediated mRNA decay (NMD) system is an RNA surveillance system that degrades mRNAs possessing premature translation termination codons (PTCs). Although NMD factors are well conserved in eukaryotes, it is speculated that the contexts of those termination codons that are subject to NMD are different depending on the organism. Context analysis of termination codons that are recognized by the plant NMD system would clarify NMD target mRNAs in plants, and contribute to our understanding of its biological relevance in plants. In the present study we analyzed the positions of termination codons that were recognized as PTCs using an Agrobacterium transient expression assay, i.e. the accumulation of a series of plant mRNAs with nonsense mutations in different contexts was tested in plants. The results indicated that termination codons that are located distant from the mRNA 3' termini or >50 nucleotides upstream of the 3'-most exon-exon junction are recognized as substrates for NMD.  相似文献   

10.
11.
程苗苗  曹延延 《遗传》2020,(4):354-362
无义介导的mRNA降解(nonsense-mediated mRNA decay, NMD)是指在病理或正常生理情况下mRNA上出现了提前终止密码子(premature termination codon, PTC),从而导致mRNA降解。它是一种广泛存在的mRNA质量监控机制。近年来,在多种疾病中发现某些PTC并未触发NMD,这种现象被称为NMD逃逸(NMD escape),然而其确切机制尚不十分清楚。目前公认的两个学说为:(1) PTC通读,即蛋白的翻译可以顺利通过PTC直至正常的终止密码子,产生全长蛋白;(2)翻译的重新启动,即蛋白翻译在PTC下游的潜在起始点重新开始直至终止密码子,产生N端截短蛋白。目前,通过利用PTC通读,越来越多的药物或小分子已被成功用于无义变异相关疾病的治疗。本文主要综述了NMD逃逸的机制及其在疾病治疗中的应用和进展,以期为进一步了解NMD逃逸及其相关应用概况提供参考。  相似文献   

12.
13.
Zhang Z  Krainer AR 《Molecular cell》2004,16(4):597-607
Nonsense mutations influence several aspects of gene expression, including mRNA stability and splicing fidelity, but the mechanism by which premature termination codons (PTCs) can apparently affect splice-site selection remains elusive. We used a model human beta-globin gene with duplicated 5' splice sites (5'ss) and found that PTCs inserted between the two 5'ss do not directly influence splicing in this system. Instead, their apparent effect on 5'ss selection in vivo is an indirect result of nonsense-mediated mRNA decay (NMD), as conditions that eliminated NMD also abrogated the effect on splicing. Remarkably, we found an unexpected function of SR proteins in targeting several mRNAs with PTCs to the NMD pathway. Overexpression of various SR proteins strongly enhanced NMD, and this effect required an RS domain. Our data argue against a universal role of PTCs in regulating pre-mRNA splicing and reveal an additional function of SR proteins in eukaryotic gene expression.  相似文献   

14.
Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that recognizes and rapidly degrades mRNAs containing premature termination codons (PTC). The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have previously reported that mRNAs containing PTCs in close proximity to the translation initiation codon (AUG-proximal PTCs) can substantially evade NMD. Here, we explore the mechanistic basis for this NMD resistance. We demonstrate that translation termination at an AUG-proximal PTC lacks the ribosome stalling that is evident in an NMD-sensitive PTC. This difference is associated with demonstrated interactions of the cytoplasmic poly(A)-binding protein 1, PABPC1, with the cap-binding complex subunit, eIF4G and the 40S recruitment factor eIF3 as well as the ribosome release factor, eRF3. These interactions, in combination, underlie critical 3'-5' linkage of translation initiation with efficient termination at the AUG-proximal PTC and contribute to an NMD-resistant PTC definition at an early phase of translation elongation.  相似文献   

15.
Messenger RNAs harboring nonsense codons (or premature translation termination codons [PTCs]) are degraded by a conserved quality-control mechanism known as nonsense-mediated mRNA decay (NMD), which prevents the accumulation of truncated and potentially harmful proteins. In Drosophila melanogaster, degradation of PTC-containing messages is initiated by endonucleolytic cleavage in the vicinity of the nonsense codon. The endonuclease responsible for this cleavage has not been identified. Here, we show that SMG6 is the long sought NMD endonuclease. First, cells expressing an SMG6 protein mutated at catalytic residues fail to degrade PTC-containing messages. Moreover, the SMG6-PIN domain can be replaced with the active PIN domain of an unrelated protein, indicating that its sole function is to provide endonuclease activity for NMD. Unexpectedly, we found that the catalytic activity of SMG6 contributes to the degradation of PTC-containing mRNAs in human cells. Thus, SMG6 is a conserved endonuclease that degrades mRNAs terminating translation prematurely in metazoa.  相似文献   

16.
Selenoproteins are a family of proteins that share the common feature of containing selenocysteine, the “twenty-first” amino acid. Selenocysteine incorporation occurs during translation of selenoprotein messages by redefinition of UGA codons, which normally specify termination of translation. Studies of the eukaryotic selenocysteine incorporation mechanism suggest that selenocysteine insertion is inefficient compared with termination. Nevertheless, selenoprotein P and several other selenoproteins are known to contain multiple selenocysteines. The production of full-length (FL) protein from these messages would seem to demand highly efficient selenocysteine incorporation due to the compounding effect of termination at each UGA codon. We present data demonstrating that efficient incorporation of multiple selenocysteines can be reconstituted in rabbit reticulocyte lysate translation reactions. Selenocysteine incorporation at the first UGA codon is inefficient but increases by approximately 10-fold at subsequent downstream UGA codons. We found that ribosomes in the “processive” phase of selenocysteine incorporation (i.e., after decoding the first UGA codon as selenocysteine) are fully competent to terminate translation at UAG and UAA codons, that ribosomes become less efficient at selenocysteine incorporation as the distance between UGA codons is increased, and that efficient selenocysteine incorporation is not dependent on cis-acting elements unique to selenoprotein P. Furthermore, we found that the percentage of ribosomes decoding a UGA codon as selenocysteine rather than termination can be increased by 3- to 5-fold by placing the murine leukemia virus UAG read-through element upstream of the first UGA codon or by providing a competing messenger RNA in trans. The mechanisms of selenocysteine incorporation and selenoprotein synthesis are discussed in light of these results.  相似文献   

17.

Background  

The nonsense-mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature termination codons (PTCs). In yeast Saccharomyces cerevisiae, the activity of the NMD pathway depends on the recognition of the PTC by the translational machinery. Translation termination factors eRF1 (Sup45) and eRF3 (Sup35) participate not only in the last step of protein synthesis but also in mRNA degradation and translation initiation via interaction with such proteins as Pab1, Upf1, Upf2 and Upf3.  相似文献   

18.
19.
20.
Premature termination codons (PTCs) are equivalent to nonsense sequences. They encode no amino acid, and their presence precludes the synthesis of full-length proteins. Furthermore, the resulting truncated proteins, if synthesized and stable, are likely to be non-functional or might even be deleterious to cellular metabolism. Approximately one third of genetic and acquired diseases are due to PTCs. In fact, PTCs are apt to cause at least some cases of all diseases that involve protein insufficiency. Cells have evolved a way to eliminate mRNAs that contain PTCs using a mechanism called nonsense-mediated mRNA decay (NMD). Here, we will review how to determine which PTCs elicit NMD, what is currently known about the mechanism of NMD, and additional information that is pertinent to establishing therapies for PTC-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号