首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterozygous tandem duplications formed in conjugational matings in Escherichia coliprovides a convenient model system for studying the evolution of bacterial chromosome. Heterozygous duplications segregate various classes of haploid and diploid recombinants that appear as a result of unequal crossing over between sister chromosomes. In this work, an extended tandem duplication in the deooperon of E. colicarrying deoA deoB::Tn5/deoC deoD thr::Tn9alleles was examined. Recombination between homologous DNA repeats in the duplication was studied in strains carrying different combinations of recBC, sbcBC, recB::Tn10, recQ::Tn3and recF::Tn3mutations. The frequency of recombination between homologous DNA repeats was very high in all strains and did not decrease when the RecBCD and RecF recombinational pathways were simultaneously damaged in strains with the recB sbcBC recQ(or recF) genotype. It is assumed that unequal crossing over between direct DNA repeats in duplications may proceed through a particular pathway of adaptive recombination.  相似文献   

2.
Meiosis is essential for sexual reproduction and recombination is a critical step required for normal meiosis. Understanding the underlying molecular mechanisms that regulate recombination is important for medical, agricultural and ecological reasons. Readily available molecular and cytological tools make Arabidopsis an excellent system to study meiosis. Here we review recent developments in molecular genetic analyses on meiotic recombination. These include studies on plant homologs of yeast and animal genes, as well as novel genes that were first identified in plants. The characterizations of these genes have demonstrated essential functions from the initiation of recombination by double-strand breaks to repair of such breaks, from the formation of doubie-HoUiday junctions to possible resolution of these junctions, both of which are critical for crossover formation. The recent advances have ushered a new era in plant meiosis, in which the combination of genetics, genomics, and molecular cytology can uncover important gene functions.  相似文献   

3.
Homologous recombination has been extensively studied in bacteria, yeast, and more recently in animal cells, but little is known about this process in plants. We present here an analysis of meiotic and somatic chromosomal recombination between closely linked inverted duplications located on a single chromosomal region in tobacco. Transgenic tobacco lines were constructed by Agrobacterium transformation with plasmid vectors containing a functional hygromycin phosphotransferase (hyg) selectable marker flanked by a pair of defective neomycin phosphotransferase (neo) genes positioned as inverted repeats. As each neo gene is mutated in a different site, recombination between the two defective genes can be detected following selection for kanamycin-resistant plant cells. The recombination substrates were designed to allow investigation into the nature of molecular events underlying homologous recombination by restriction endonuclease analysis. Chromosomal recombination was studied in mitotically dividing cells (cultured leaf mesophyll cells) and after meiosis (germinated seedlings). Spontaneous somatic recombinants were recovered at frequencies between ~3 x 10-5 to 10-6 events per cell. Low dose [gamma] irradiation of somatic cells resulted in a threefold maximum increase in the recovery of recombinants. Recombinants were also detected at low frequency when transgenic T3 seeds were germinated under kanamycin selection. DNA gel blot analyses demonstrated that homologous recombination occurred mainly as gene conversion unassociated with reciprocal exchange, although a variety of other events including gene coconversion were also observed.  相似文献   

4.
We have examined meiotic and mitotic recombination between repeated genes on nonhomologous chromosomes in the yeast Saccharomyces cerevisiae. The results of these experiments can be summarized in three statements. First, gene conversion events between repeats on nonhomologous chromosomes occur frequently in meiosis. The frequency of such conversion events is only 17-fold less than the analogous frequency of conversion between genes at allelic positions on homologous chromosomes. Second, meiotic and mitotic conversion events between repeated genes on nonhomologous chromosomes are associated with reciprocal recombination to the same extent as conversion between allelic sequences. The reciprocal exchanges between the repeated genes result in chromosomal translocations. Finally, recombination between repeated genes on nonhomologous chromosomes occurs much more frequently in meiosis than in mitosis.  相似文献   

5.
M. J. Mahan  J. R. Roth 《Genetics》1989,121(3):433-443
The role of recBC functions has been tested for three types of chromosomal recombination events: (1) recombination between direct repeats to generate a deletion, (2) recombination between a small circular fragment and the chromosome, and (3) recombination between inversely oriented repeats to form an inversion. Deletion formation by recombination between direct repeats, which does not require a fully reciprocal exchange, is independent of recBC function. Circle integration and inversion formation are both stimulated by the recBC function; these events require full reciprocality. The results suggest that half-reciprocal exchanges can occur without recBC, but recBC functions greatly stimulate completion of a fully reciprocal exchange. We propose that chromosomal recombination is a two-step process, and recBC functions are primarily required for the second step.  相似文献   

6.
Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of “vulnerable” crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.  相似文献   

7.
真核生物减数分裂重组热点的研究进展   总被引:3,自引:0,他引:3  
高玲  慕小倩  林煜  李勇冠  程祝宽 《遗传》2005,27(4):641-650
真核生物减数分裂过程中基因组中某些区域会发生较其他区域高的重组频率,这些区域被称作减数分裂重组热点。该现象首先在酵母的研究中发现,重组区域因含有启动重组的特异位点,从而使基因组中呈现出重组不均匀分布的特征。重组热点还在真菌、玉米和人类等真核生物中发现。本文列举了不同真核生物体中具有代表性鉴别重组热点的方法,总结了目前减数分裂重组热点的研究现状,探讨了引起真核生物减数分裂交换活跃的因子和机制,并就当前存在的问题和今后发展的前景进行了讨论。  相似文献   

8.
ASH. Goldman  M. Lichten 《Genetics》1996,144(1):43-55
To examine constraints imposed on meiotic recombination by homologue pairing, we measured the frequency of recombination between mutant alleles of the ARG4 gene contained in pBR322-based inserts. Inserts were located at identical loci on homologues (allelic recombination) or at different loci on either homologous or heterologous chromosomes (ectopic recombination). Ectopic recombination between interstitially located inserts on heterologous chromosomes had an efficiency of 6-12% compared to allelic recombination. By contrast, ectopic recombination between interstitial inserts located on homologues had relative efficiencies of 47-99%. These findings suggest that when meiotic ectopic recombination occurs, homologous chromosomes are already colocalized. The efficiency of ectopic recombination between inserts on homologues decreased as the physical distance between insert sites was increased. This result is consistent with the suggestion that during meiotic recombination, homologues are not only close to each other, but also are aligned end to end. Finally, the efficiency of ectopic recombination between inserts near telomeres (within 16 kb) was significantly greater than that observed with inserts >50 kb from the nearest telomere. Thus, at the time of recombination, there may be a special relationship between the ends of chromosomes not shared with interstitial regions.  相似文献   

9.
10.
11.
The available data on rearrangements (recombinations, deletions, and insertions) of picornavirus genomes fit the replicative template switch model postulating that an incomplete nascent minus RNA strand leaves the template and resumes its synthesis on another template (or another locus of the original template). The nascent strand dissociation is believed to be facilitated by the elongation pausing caused by secondary structure elements or nucleotide misincorporations. Rearrangements may involve (nearly) identical or completely dissimilar pairs of parting and anchoring sites. Rearrangements contribute to both conservation and variation of the picornaviral genomes.  相似文献   

12.
Chromosomal Recombination in HAEMOPHILUS INFLUENZAE   总被引:3,自引:0,他引:3       下载免费PDF全文
Haemophilus influenzae cultures doubly lysogenic for defective phage HP1, with a prophage marker sequence +b+/a+c, always contained some free wild-type phage. Single ultraviolet-irradiated cells produced either no wild-type phage or large numbers of them. This suggested that the phage was not released by the original double lysogen but by internal recombinants, i.e., by double lysogens with altered prophage marker sequence such as +++/abc or +b+/++c. Thirty-one wild-type phage-producing clones have been isolated independently from cultures of this double lysogen and identified. They fell in five classes. Two classes, still possessing all three prophage markers, can be explained by Campbell's (1963) prophage recombination model. The other classes had lost one or more markers. They can be explained by interchromosomal double-strand DNA breakage and rejoining. A single-DNA-strand gene conversion model is discussed in view of the fact that genetic transformation involves single-DNA-strand exchanges. A number of potentially interesting mutants has been analyzed of which only the derivatives of rec1 mutant DB117 (obtained from Dr. J. Setlow) were incapable of internal recombination.  相似文献   

13.
14.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

15.
A central feature of meiosis is the pairing and recombination of homologous chromosomes. Ustilago maydis, a biotrophic fungus that parasitizes maize, has long been utilized as an experimental system for studying recombination, but it has not been clear when in the life cycle meiotic recombination initiates. U. maydis forms dormant diploid teliospores as the end product of the infection process. Upon germination, teliospores complete meiosis to produce four haploid basidiospores. Here we asked whether the meiotic process begins when teliospores germinate or at an earlier stage in development. When teliospores homozygous for a cdc45 mutation temperature sensitive for DNA synthesis were germinated at the restrictive temperature, four nuclei became visible. This implies that teliospores have already undergone premeiotic DNA synthesis and suggests that meiotic recombination initiates at a stage of infection before teliospores mature. Determination of homologous recombination in plant tissue infected with U. maydis strains heteroallelic for the nar1 gene revealed that Nar+ recombinants were produced at a stage before teliospore maturation. Teliospores obtained from a spo11Δ cross were still able to germinate but the process was highly disturbed and the meiotic products were imbalanced in chromosomal complement. These results show that in U. maydis, homologous recombination initiates during the infection process and that meiosis can proceed even in the absence of Spo11, but with loss of genomic integrity.  相似文献   

16.
17.
M. Goldway  A. Sherman  D. Zenvirth  T. Arbel    G. Simchen 《Genetics》1993,133(2):159-169
A multicopy plasmid was isolated from a yeast genomic library, whose presence resulted in a twofold increase in meiotic nondisjunction of chromosome III. The plasmid contains a 7.5-kb insert from the middle of the right arm of chromosome III, including the gene THR4. Using chromosomal fragments derived from chromosome III, we determined that the cloned region caused a significant, specific, cis-acting increase in chromosome III nondisjunction in the first meiotic division. The plasmid containing this segment exhibited high spontaneous meiotic integration into chromosome III (in 2.4% of the normal meiotic divisions) and a sixfold increase (15.5%) in integration in nondisjunctant meioses. Genetic analysis of the cloned region revealed that it contains a ``hot spot' for meiotic recombination. In DNA of rad50S mutant cells, a strong meiosis-induced double strand break (DSB) signal was detected in this region. We discuss the possible relationships between meiosis-induced DSBs, recombination and chromosome disjunction, and propose that recombinational hot spots may be ``pairing sites' for homologous chromosomes in meiosis.  相似文献   

18.
OsHUS1 Facilitates Accurate Meiotic Recombination in Rice   总被引:1,自引:0,他引:1  
Meiotic recombination normally takes place between allelic sequences on homologs. This process can also occur between non-allelic homologous sequences. Such ectopic interaction events can lead to chromosome rearrangements and are normally avoided. However, much remains unknown about how these ectopic interaction events are sensed and eliminated. In this study, using a screen in rice, we characterized a homolog of HUS1 and explored its function in meiotic recombination. In Oshus1 mutants, in conjunction with nearly normal homologous pairing and synapsis, vigorous, aberrant ectopic interactions occurred between nonhomologous chromosomes, leading to multivalent formation and subsequent chromosome fragmentation. These ectopic interactions relied on programed meiotic double strand breaks and were formed in a manner independent of the OsMER3-mediated interference-sensitive crossover pathway. Although early homologous recombination events occurred normally, the number of interference-sensitive crossovers was reduced in the absence of OsHUS1. Together, our results indicate that OsHUS1 might be involved in regulating ectopic interactions during meiosis, probably by forming the canonical RAD9-RAD1-HUS1 (9-1-1) complex.  相似文献   

19.
The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31) were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1), results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.  相似文献   

20.
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号