首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase (COX) and lipoxygenase (LOX) metabolic enzymes are the two main pathways for arachidonic acid (AA) metabolism. Emerging reports now indicate alterations of arachidonic acid metabolism with carcinogenesis and many COX and LOX inhibitors are being investigated as potential anticancer drugs. COX-2 is frequently expressed in many tumors, such as multiple myeloma (MM), a disorder in which malignant plasma cells accumulate, generally derived from one clone in the bone marrow, and is an independent predictor of poor outcome. 12-LOX, an important member of LOX, is proved to be expressed in MM cells. We hypothesize that COX-2 and 12-LOX represent an integrated system, COX-2/12-LOX dual pathway, which much more efficiently enhances the intracellular levels of unesterified arachidonate and regulates cell proliferative, apoptosis and pro-angiogenic potential of MM. The COX-2/12-LOX dual pathway may act as a novel potential strategy for treatment of tumors co-expressing COX-2 and 12-LOX, and the agents that can simultaneously inhibit the two enzymes of COX-2 and 12-LOX may present a novel and promising therapeutic approach to these tumors.  相似文献   

2.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

3.
Short-chain fatty acids (SCFAs) have been demonstrated to induce differentiation and/or apoptosis in colon cancer cells. A close correlation between tissue transglutaminase (tTG) expression and differentiation and/or apoptosis has been suggested in many cell lineages. However, the effects of SCFAs on tTG expression in colon cancer cells have not yet been reported. In this report, the relationship between cytosolic tTG levels and differentiation state was investigated in six human colon cancer cell lines. Effects of four kinds of SCFAs (acetate, propionate, n-butyrate, and isobutyrate) on the expression of tTG then were investigated in association with their effects on apoptosis induction. High expression of tTG protein and mRNA were found in SW480 and WiDr cell lines, which exhibited well differentiated phenotypes. tTG expression was hardly detectable in the less differentiated cell lines COLO201, COLO320DM, and CW-2. However, n-butyrate and propionate significantly increased cytosolic tTG levels at concentrations above 0.5 mM in these less differentiated colon cancer cells. n-Butyrate and propionate induced growth suppression and apoptosis in these cell lines at concentrations that can induce tTG expression. Acetate and isobutyrate did not induce tTG expression or growth suppression at concentrations up to 8 mM. In conclusion, tTG induction by propionate and n-butyrate was suggested to be closely linked to their differentiation- and apoptosis-inducing effects in colon cancer cells. These findings may explain the mechanisms by which dietary fiber show preventive effects against colon carcinogenesis.  相似文献   

4.
Annonaceous acetogenins, a large family of naturally occurring polyketides isolated from various species of the plant genus Annonaceae, have been found to exhibit significant cytotoxicity against a variety of cancer cells. Previous studies showed that these compounds could act on the mitochondria complex-I and block the corresponding electron transport chain and terminate ATP production. However, more details of the mechanisms of action remain ambiguous. In this study we tested the effects of a set of mimetics of annonaceous acetogenin on some cancer cell lines, and report that among them AA005 exhibits the most potent antitumor activity. AA005 depletes ATP, activates AMP-activated protein kinase (AMPK) and inhibits mTOR complex 1 (mTORC1) signal pathway, leading to growth inhibition and autophagy of colon cancer cells. AMPK inhibitors compound C and inosine repress, while AMPK activator AICAR enhances, AA005-caused proliferation suppression and subsequent autophagy of colon cancer cells. AA005 enhances the ATP depletion and AMPK activation caused by 2-deoxyglucose, an inhibitor of mitochondrial respiration and glycolysis. AA005 also inhibits chemotherapeutic agent cisplatin-triggered up-regulation of mTOR and synergizes with this drug in suppression of proliferation and induction of apoptosis of colon cancer cells. These data indicate that AA005 is a new metabolic inhibitor which exhibits therapeutic potentials in colon cancer.  相似文献   

5.
Lung cancer continues to be the leading cause of cancer deaths throughout the world and conventional therapy remains largely unsuccessful. Although, chemoprevention is a plausible alternative approach to curb the lung cancer epidemic, clinically there are no effective chemopreventive agents. Thus, development of novel compounds that can target cellular and molecular pathways involved in the multistep carcinogenesis process is urgently needed. Previous studies have suggested that substitution of sulfur by selenium in established cancer chemopreventive agents may result in more effective analogs. Thus in the present study we selected the chemopreventive agent S,S′-(1,4-phenylenebis[1,2-ethanediyl])bisisothiourea (PBIT), also known to inhibit inducible nitric oxide synthase (iNOS), synthesized its selenium analog (Se-PBIT) and compared both compounds in preclinical model systems using non-small cell lung cancer (NSCLC) cell lines (NCI-H460 and A549); NSCLC is the most common histologic type of all lung cancer cases. Se-PBIT was found to be superior to PBIT as an inducer of apoptosis and inhibitor of cell growth. Se-PBIT arrested cell cycles at G1 and G2-M stage in both A549 and H460 cell lines. Although both compounds are weakly but equally effective inhibitors of iNOS protein expression and activity, only Se-PBIT significantly enhanced the levels of p53, p38, p27 and p21 protein expression, reduced levels of phospholipase A2 (PLA2) but had no effect on cyclooxygenase-2 (COX-2) protein levels; such molecular targets are involved in cell growth inhibition, induction of apoptosis and cell cycle regulation. The results indicate that Se-PBIT altered molecular targets that are involved in the development of human lung cancer. Although, the mechanisms that can fully account for these effects remain to be determined, the results are encouraging to further evaluate the chemopreventive efficacy of Se-PBIT against the development of NSCLC in a well-defined animal model.  相似文献   

6.
All-trans-retinoic acid (ATRA) has been shown to inhibit the growth of a number of ovarian tumor cell lines while others have been found to be resistant to retinoid suppression of growth. Interestingly, two synthetic retinoids, CD437 and 4-HPR, inhibit the growth of both ATRA-sensitive (CA-OV-3) and ATRA-resistant (SK-OV-3) ovarian tumor cells. However, in contrast to ATRA, both induce apoptosis. Our goal was to elucidate the mechanism by which these two synthetic retinoids induce apoptosis in ovarian tumor cells. Since it has been documented that apoptosis induction is often mediated by the activation of a cascade of proteases known as caspases, we initially studied the role of caspases in induction of apoptosis by CD437 and 4-HPR. We found that both retinoids induced caspase-3 and caspase-9 enzyme activity. Furthermore, using caspase specific inhibitors we determined that caspase-3 and caspase-9 activity was essential for the induction of apoptosis by these synthetic retinoids since these inhibitors completely blocked CD437 and 4-HPR induced apoptosis. Interestingly, we found that treatment with bongkriekic acid (BA), a mitochondrial membrane depolarization inhibitor, blocked apoptosis, caspase-9 activation and caspase-3 activation induced by both retinoids. Finally, we were able to determine that CD437 treatment induced the translocation of TR3, a nuclear orphan receptor, whereas, 4-HPR did not. Our results suggest that CD437 and 4-HPR initially activate separate pathways to induce mitochondrial depolarization but both utilize mitochondrial depolarization, caspase-9 activation, and caspase-3 activation in the later stages of apoptosis induction.  相似文献   

7.
Recent observations show a positive correlation between the expression of cyclooxygenase (COX), especially COX-2), and cancer development. Here we tested the hypothesis that expression of COX-2 could influence apoptosis in lung cancer cell lines. To address this question, we determined the effects of camptothecin-induced apoptosis on three lung cancer cell lines which over express COX-1 (CORL23), COX-2 (MOR-P) and neither isoform (H-460), and determine if these effects were prostaglandin mediated. We also compared the effects of non-selective and isoenzyme selective COX-2 inhibitors on camptothecin-induced apoptosis in these three cell lines. Camptothecin induced apoptosis in all three cell lines independently of COX-1 or COX-2 expression. Indomethacin, a non-selective COX inhibitor and NS398, a selective COX-2 inhibitor had no effect on camptothecin-induced apoptosis at concentrations that abolished prostaglandin production. In conclusion, these finding suggest that the COX pathway is not involved in camptothecin-induced apoptosis of non-small cell lung cancer cell lines.  相似文献   

8.
Although various stimuli-inducing cell demise are known to alter mitochondrial morphology, it is currently debated whether alteration of mitochondrial morphology is per se responsible for apoptosis execution or prevention. This study was undertaken to examine the effect of histone deacetylase (HDAC) inhibitors on mitochondrial fusion-fission equilibrium. The mechanism underlying HDAC inhibitor-induced alteration of mitochondrial morphology was examined in various cells including primary cultured cells and untransformed and cancer cell lines treated with seven different HDAC inhibitors. Suberoylanilide hydroxamic acid (SAHA)-induced mitochondrial elongation in both Hep3B and Bcl-2-overexpressing Hep3B cells, apart from its apoptosis induction function. SAHA significantly decreased the expression of mitochondrial fission protein Fis1 and reduced the translocation of Drp1 to the mitochondria. Fis1 overexpression attenuated SAHA-induced mitochondrial elongation. In addition, depletion of mitochondrial fusion proteins, Mfn1 or Opa1, by RNA interference also attenuated SAHA-induced mitochondrial elongation. All of the HDAC inhibitors we examined induced mitochondrial elongation in all the cell types tested at both subtoxic and toxic concentrations. These results indicate that HDAC inhibitors induce mitochondrial elongation, irrespective of the induction of apoptosis, which may be linked to alterations of mitochondrial dynamics regulated by mitochondrial morphology-regulating proteins. Since mitochondria have recently emerged as attractive targets for cancer therapy, our findings that HDAC inhibitors altered mitochondrial morphology may support the rationale for these agents as novel therapeutic approaches against cancer. Further, the present study may provide insight into a valuable experimental strategy for simple manipulation of mitochondrial morphology.  相似文献   

9.
Arachidonic acid (AA) participates in a reacylation/deacylation cycle of membrane phospholipids, the so-called Lands cycle, that serves to keep the concentration of this free fatty acid in cells at a very low level. To manipulate the intracellular AA level in U937 phagocytes, we have used several pharmacological strategies to interfere with the Lands cycle. We used inhibitors of the AA reacylation pathway, namely thimerosal and triacsin C, which block the conversion of AA into arachidonoyl-CoA, and a CoA-independent transacylase inhibitor that blocks the movement of AA within phospholipids. In addition, we used cells overexpressing group VIA phospholipase A(2), an enzyme with key roles in controlling basal fatty acid deacylation reactions in phagocytic cells. All of these different strategies resulted in the expected increase of cellular free AA but also in the induction of cell death by apoptosis. Moreover, when used in combination with any of the aforementioned drugs, AA itself was able to induce apoptosis at doses as low as 10 muM. Blocking cyclooxygenase or lipoxygenases had no effect on the induction of apoptosis by AA. Collectively, these results indicate that free AA levels within the cells may provide an important cellular signal for the onset of apoptosis and that perturbations of the mechanisms controlling AA reacylation, and hence free AA availability, may decisively affect cell survival.  相似文献   

10.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

11.
视黄酸对胃癌细胞周期的调控   总被引:1,自引:0,他引:1  
视黄酸(RA)能够抑制许多类型癌细胞生长、诱导细胞凋亡和调节细胞周期。本文研究了全反式视黄酸(ATRA)对人胃癌细胞的作用机理。结果表明,ATRA通过诱导细胞滞留在G_0/G_1期而显著抑制胃癌细胞生长,但ATRA不能诱导胃癌细胞凋亡;ATRA调控细胞周期与c-myc、磷酸化Rb水平的下调和p21~(WAF1/CIP1)、p53水平的上调有关,而cyclinD_1和CDK_4水平没有明显变化。在RA抗性细胞中,ATRA不能调节这些基因表达。结果证实,ATRA对胃癌细胞生长抑制与其诱导细胞滞留在G_0/G_1期有关,而与细胞凋亡的诱导无关,许多重要的、与周期相关的分子,包括cmyc、p21~(WAF1/CIP1、p53和Rb等参与细胞周期的调控。  相似文献   

12.
Bile salts induce apoptosis and are implicated as promoters of colon cancer. The mechanisms by which bile salts produce these effects are poorly understood. We report that the cytotoxic bile salt, sodium deoxycholate (NaDOC), activates the key stress response proteins, NF-kappaB and poly(ADP-ribose) polymerase (PARP). The activation of NF-kappaB and PARP, respectively, indicates that bile salts induce oxidative stress and DNA damage. The pre-treatment of cells with specific inhibitors of these proteins [pyrrolidine dithiocarbamate (NF-kappaB inhibitor) and 3-aminobenzamide (PARP inhibitor)] sensitizes cells to the induction of apoptosis by NaDOC, indicating that these stress response pathways are protective in nature. Colon cancer risk has been reported to be associated with resistance to apoptosis. We found an increase in activated NF-kappaB at the base of human colon crypts that exhibit apoptosis resistance. This provides a link between an increased stress response and colon cancer risk. The implications of these findings with respect to apoptosis and to colon carcinogenesis are discussed.  相似文献   

13.
Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis inhibitors may be a promising therapy for the treatment of NSCLC.  相似文献   

14.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

15.
Many papers have shown that sphingolipids control the balance in cells between growth and proliferation, and cell death by apoptosis. Sphingosine-1-phosphate (Sph1P) and glucosylceramide (GlcCer) induce proliferation processes, and ceramide (Cer), a metabolic intermediate between the two, induces apoptosis. In cancers, the balance seems to have come undone and it should be possible to kill the cells by enhancing the processes that lead to ceramide accumulation. The two control systems are intertwined, modulated by a variety of agents affecting the activities of the enzymes in Cer-GlcCer-Sph1P interdependence. It is proposed that successful cancer chemotherapy requires the use of many agents to elevate ceramide levels adequately. This review updates current knowledge of sphingolipid metabolism and some of the evidence showing that ceramide plays a causal role in apoptosis induction, as well as a chemotherapeutic agent.  相似文献   

16.
Betulinic acid (BetA) is a plant-derived pentacyclic triterpenoid that exerts potent anti-cancer effects in vitro and in vivo. It was shown to induce apoptosis via a direct effect on mitochondria. This is largely independent of proapoptotic BAK and BAX, but can be inhibited by cyclosporin A (CsA), an inhibitor of the permeability transition (PT) pore. Here we show that blocking apoptosis with general caspase inhibitors did not prevent cell death, indicating that alternative, caspase-independent cell death pathways were activated. BetA did not induce necroptosis, but we observed a strong induction of autophagy in several cancer cell lines. Autophagy was functional as shown by enhanced flux and degradation of long-lived proteins. BetA-induced autophagy could be blocked, just like apoptosis, with CsA, suggesting that autophagy is activated as a response to the mitochondrial damage inflicted by BetA. As both a survival and cell death role have been attributed to autophagy, autophagy-deficient tumor cells and mouse embryo fibroblasts were analyzed to determine the role of autophagy in BetA-induced cell death. This clearly established BetA-induced autophagy as a survival mechanism and indicates that BetA utilizes an as yet-undefined mechanism to kill cancer cells.  相似文献   

17.
Both Akt 2 and acid ceramidase (ASAH1) are found aberrantly overexpressed in cancer cells, but whether these two enzymes cooperate to induce malignant transformation is not known. We found that in immortalized, non-transformed cells, ectopic co-expression of Akt2 and ASAH1 is significantly more effective than expression of each gene alone at inducing cell invasion and at conferring resistance to apoptosis. Consistent with these observations, siRNA-mediated depletion of both Akt2 and ASAH1 is much more potent than depleting each alone at inhibiting cell viability/proliferation and cell invasion. Furthermore, pharmacological inhibitors of Akt (TCN or MK-2206) and ASAH1 (B13) synergize to inhibit cell viability/proliferation, and combinations of these drugs are more effective than single-agent treatments at inhibiting cell invasion. Taken together, the results suggest that these two enzymes cooperate to induce malignant transformation and warrant further preclinical studies to evaluate the potential of combining inhibitors of Akt and ASAH1 to treat cancer.  相似文献   

18.
19.
Renal cell carcinoma (RCC) is common renal malignancy within poor prognosis. TGF-β-activated kinase 1 (TAK1) plays vital roles in cell survival, apoptosis-resistance and carcinogenesis through regulating nuclear factor-κB (NF-κB) and other cancer-related pathways. Here we found that TAK1 inhibitors (LYTAK1, 5Z-7-oxozeanol (5Z) and NG-25) suppressed NF-κB activation and RCC cell (786-O and A489 lines) survival. TAK1 inhibitors induced apoptotic cytotoxicity against RCC cells, which was largely inhibited by the broad or specific caspase inhibitors. Further, shRNA-mediated partial depletion of TAK1 reduced 786-O cell viability whiling activating apoptosis. Significantly, TAK1 was over-expressed in human RCC tissues, and its level was correlated with phosphorylated NF-κB. Finally, kinase inhibition or genetic depletion of TAK1 enhanced the activity of vinblastine sulfate (VLB) in RCC cells. Together, these results suggest that TAK1 may be an important oncogene or an effective target for RCC intervention.  相似文献   

20.
We have investigated in vitro effects of anticancer therapy with the histone deacetylase inhibitor (HDACi) 4-phenylbutyrate (4-PB) combined with receptor tyrosine kinase inhibitors (RTKi) gefitinib or vandetanib on the survival of glioblastoma (U343MGa) and medulloblastoma (D324Med) cells. In comparison with individual effects of these drugs, combined treatment with gefitinib/4-PB or vandetanib/4-PB resulted in enhanced cell killing and reduced clonogenic survival in both cell lines. Our results suggest that combined treatment using HDACi and RTKi may beneficially affect the outcome of cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号