首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of beta-adrenoceptor blockade on H+ and K+ flux in exercising humans   总被引:1,自引:0,他引:1  
The effect of beta-adrenoceptor blockade (beta B) on muscle release and uptake of H+ and K+ in humans during maximal exercise has been investigated. Eight volunteers cycled intermittently at power outputs corresponding to 100% of maximal O2 uptake. Prior to exercise either propranolol (beta B) or saline (control) was infused into the femoral vein. Arterial and femoral venous blood samples were drawn at rest, during exercise, and during 30-min recovery. Peak arterial blood values for K+, lactic acid (LA), and base deficit (BD) (mean +/- SE) were respectively 5.5 +/- 0.1, 9.5 +/- 0.6, and 11.7 +/- 0.9 mmol/l during beta B and 5.1 +/- 0.1, 8.3 +/- 0.6, and 10.3 +/- 1.0 for control (P less than 0.05). The release of K+ from the working leg did not differ between treatments during exercise, but K+ uptake during late recovery (5-30 min) was slightly lower during beta B. Thus the higher arterial K+ levels during exercise (beta B) cannot be attributed to greater release by active muscle but are likely due to decreased K+ uptake by noncontracting muscle. Arterial-femoral venous differences for LA and BD did not differ significantly between treatments. Additionally LA exchange across the leg was similar to H+ exchange (arterial-femoral venous differences for BD) under all conditions. During early recovery (1-5 min), regardless of experimental treatment, BD levels iin arterial blood were higher than LA (P less than 0.05). These elevated BD levels may be due to unequal removal rates between LA and H+ equivalents by nonexercised tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Flux control coefficients of hexokinase for glucose metabolism in different rat tissues have been determined, showing that the hepatocyte cytosolic hexokinase is the only one which plays an important role in the control of the glucose-input flux studied among the different tissues. Explanation of these results are given in terms of the kinetics features of hexokinase and the metabolic role of glucose in these tissues.  相似文献   

3.
4.
5.
Steady-state ventilatory responses to CO2 inhalation, intravenous CO2 loading (loading), and intravenous CO2 unloading (unloading) were measured in chronic awake dogs while they exercised on an air-conditioned treadmill at 3 mph and 0% grade. End-tidal PO2 was maintained at control levels by manipulation of inspired gas. Responses obtained in three dogs demonstrated that the response to CO2 loading [average increase in CO2 output (Vco2) of 216 ml/min or 35%] was a hypercapnic hyperpnea in every instance. Also, the response to CO2 unloading [average decrease in Vco2 of 90 ml/min or 15% decrease] was a hypocapnic hypopnea in every case. Also, the analysis of the data by directional statistics indicates that there was no difference in the slopes of the responses (change in expiratory ventilation divided by change in arterial Pco2) for loading, unloading, and inhalation. These results indicate that the increased CO2 flow to the lung that occurs in exercise does not provide a direct signal to the respiratory controller that accounts for the exercise hyperpnea. Therefore, other mechanisms must be important in the regulation of ventilation during exercise.  相似文献   

6.
To determine whether feedforward control of liver glycogenolysis during exercise is subject to negative feedback by elevated blood glucose, glucose was infused into exercising rats at a rate that elevated blood glucose greater than 10 mM. Liver glycogen content decreased 22.4 mg/g in saline-infused rats compared with 13.6 mg/g in glucose-infused rats during the first 40 min of treadmill running (21 m/min, 15% grade). Liver adenosine 3',5'-cyclic monophosphate (cAMP) concentration was significantly lower in the glucose-infused rats during the exercise bout. The concentration of hepatic fructose 2,6-bisphosphate remained elevated throughout the exercise bout in glucose-infused rats but decreased markedly in saline-infused rats. Plasma insulin concentration was higher and plasma glucagon concentration lower in glucose-infused rats than in saline-infused rats during exercise. Early in exercise, liver glycogenolysis proceeds in the glucose-infused rats despite the fact that glucose and insulin concentrations are markedly elevated and liver cAMP is unchanged from resting values. These observations suggest the existence of a cAMP-independent feedforward system for activation of liver glycogenolysis that can override classical negative feedback mechanisms during exercise.  相似文献   

7.
Thermoregulatory sweating [total body (m sw,b), chest (m sw,c) and thigh (m sw,t) sweating], body temperatures [oesophageal (T oes) and mean skin temperature (T sk)] and heart rate were investigated in five sleep-deprived subjects (kept awake for 27 h) while exercising on a cycle (45 min at approximately 50% maximal oxygen consumption) in moderate heat (T air andT wall at 35° C. Them sw,c andm sw,t were measured under local thermal clamp (T sk,1), set at 35.5° C. After sleep deprivation, neither the levels of body temperatures (T oes,T sk) nor the levels ofm sw, b,m sw, c orm sw, t differed from control at rest or during exercise steady state. During the transient phase of exercise (whenT sk andT sk,1 were unvarying), them sw, c andm sw, t changes were positively correlated with those ofT oes. The slopes of them sw, c versusT oes, orm sw, t versusT oes relationships remained unchanged between control and sleep-loss experiments. Thus the slopes of the local sweating versusT oes, relationships (m sw, c andm sw, t sweating data pooled which reached 1.05 (SEM 0.14) mg·cm–2·min–1°C–1 and 1.14 (SEM 0.18) mg·cm–2·min–1·°C–1 before and after sleep deprivation) respectively did not differ. However, in our experiment, sleep deprivation significantly increased theT oes threshold for the onset of bothm sw, c andm sw, t (+0.3° C,P<0.001). From our investigations it would seem that the delayed core temperature for sweating onset in sleep-deprived humans, while exercising moderately in the heat, is likely to have been due to alterations occurring at the central level.  相似文献   

8.
In a randomized, balanced, crossover study each of six fit, adult horses ran on a treadmill at 50% of maximal rate of oxygen consumption for 60 min after being denied access to food for 18 h and then 1) fed corn (51.4 kJ/kg digestible energy), or 2) fed an isocaloric amount of alfalfa 2-3 h before exercise, or 3) not fed before exercise. Feeding corn, compared with fasting, resulted in higher plasma glucose and serum insulin and lower serum nonesterified fatty acid concentrations before exercise (P < 0.05) and in lower plasma glucose, serum glycerol, and serum nonesterified fatty acid concentrations and higher skeletal muscle utilization of blood-borne glucose during exercise (P < 0.05). Feeding corn, compared with feeding alfalfa, resulted in higher carbohydrate oxidation and lower lipid oxidation during exercise (P < 0.05). Feeding a soluble carbohydrate-rich meal (corn) to horses before exercise results in increased muscle utilization of blood-borne glucose and carbohydrate oxidation and in decreased lipid oxidation compared with a meal of insoluble carbohydrate (alfalfa) or not feeding. Carbohydrate feedings did not produce a sparing of muscle glycogen compared with fasting.  相似文献   

9.
10.
11.
Effect of dichloroacetate on lactate concentration in exercising humans   总被引:1,自引:0,他引:1  
The precise mechanism responsible for the increase in plasma lactate concentration during exercise in humans is not known. We have used dichloroacetate to test the hypothesis that a limitation in pyruvate dehydrogenase activity is responsible for the rise in plasma lactate. Dichloroacetate stimulates the activity of pyruvate dehydrogenase, which is normally the regulatory enzyme in the oxidation of glucose when tissue oxygenation is adequate. Six subjects were studied twice according to a randomized, crossover protocol, involving one test with saline infusion and another with dichloroacetate infusion. Exercise load on a bicycle ergometer was increased progressively until exhaustion. Blood samples were drawn each minute throughout exercise and periodically throughout 120 min of recovery. Dichloroacetate significantly lowered the lactate concentration during exercise performed at less than 80% of the average maximal O2 consumption. The peak concentration of lactate at exhaustion was not affected by dichloroacetate treatment, but dichloroacetate did lower lactate concentration throughout recovery. These results suggest that a limitation in pyruvate dehydrogenase activity contributes to the increase in plasma lactate during submaximal exercise and recovery.  相似文献   

12.
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.  相似文献   

13.
Effect of He-O2-breathing (79.1%:20.9%) compared to air-breathing on inspiratory ventilation (VI) and its different components [tidal volume (VT), the duration of the phases of each respiratory cycle (tI, tTOT)] as well as on inspiratory mouth occlusion pressure (P0.1) were studied in six normal men at rest and during 72 constant-load exercises (90 W) over a much longer period than in previous studies. Results showed that, irrespective of the order of administration of the two gases (7 min air----7 min He-O2 or vice versa): at rest, P0.1 decreased during He-O2 inhalation but no changes in VI and breathing pattern were detectable; during exercise, sustained He-induced hyperventilation was observed without any change in the absolute value of P0.1; increase in P0.1 between the resting period and exercise (delta P0.1) was significantly higher during He-O2-breathing than during air breathing; this He-induced hyperventilation was associated with a sustained increase in VT/tI, but with constant tI/tTOT. Helium-breathing during exercise cannot be a simple situation of resistance unloading, as has been suggested. We conclude that He-O2-breathing, after the initial compensation period, induces reflex changes in ventilatory control with an increase in inspiratory neural drive. Moreover, it appears that exercise P0.1 is not a legitimate index of inspiratory neural drive whenever rest P0.1 changes according to the nature of the inhaled gas mixture.  相似文献   

14.
Hypoxia during exercise augments blood flow in active muscles to maintain the delivery of O(2) at normoxic levels. However, the impact of hyperoxia on skeletal muscle blood flow during exercise is not completely understood. Therefore, we tested the hypothesis that the hyperemic response to forearm exercise during hyperbaric hyperoxia would be blunted compared with exercise during normoxia. Seven subjects (6 men/1 woman; 25 ± 1 yr) performed forearm exercise (20% of maximum) under normoxic and hyperoxic conditions. Forearm blood flow (FBF; in ml/min) was measured using Doppler ultrasound. Forearm vascular conductance (FVC; in ml·min(-1)·100 mmHg(-1)) was calculated from FBF and blood pressure (in mmHg; brachial arterial catheter). Studies were performed in a hyperbaric chamber with the subjects supine at 1 atmospheres absolute (ATA) (sea level) while breathing normoxic gas [21% O(2), 1 ATA; inspired Po(2) (Pi(O(2))) ≈ 150 mmHg] and at 2.82 ATA while breathing hyperbaric normoxic (7.4% O(2), 2.82 ATA, Pi(O(2)) ≈ 150 mmHg) and hyperoxic (100% O(2), 2.82 ATA, Pi(O(2)) ≈ 2,100 mmHg) gas. Resting FBF and FVC were less during hyperbaric hyperoxia compared with hyperbaric normoxia (P < 0.05). The change in FBF and FVC (Δ from rest) during exercise under normoxia (204 ± 29 ml/min and 229 ± 37 ml·min(-1)·100 mmHg(-1), respectively) and hyperbaric normoxia (203 ± 28 ml/min and 217 ± 35 ml·min(-1)·100 mmHg(-1), respectively) did not differ (P = 0.66-0.99). However, the ΔFBF (166 ± 21 ml/min) and ΔFVC (163 ± 23 ml·min(-1)·100 mmHg(-1)) during hyperbaric hyperoxia were substantially attenuated compared with other conditions (P < 0.01). Our data suggest that exercise hyperemia in skeletal muscle is highly dependent on oxygen availability during hyperoxia.  相似文献   

15.
Kinetics of intramuscular triglyceride fatty acids in exercising humans.   总被引:6,自引:0,他引:6  
A pulse ([(14)C]palmitate)-chase ([(3)H]palmitate) approach was used to study intramuscular triglyceride (imTG) fatty acid and plasma free fatty acid (FFA) kinetics during exercise at approximately 45% peak O(2) consumption in 12 adults. Vastus lateralis muscle was biopsied before and after 90 min of bicycle exercise; (3)H(2)O production, breath (14)CO(2) excretion and lipid oxidation (indirect calorimetry) rates were measured during exercise. Results: during exercise, 8.2+/-1.2 and 8.4+/-0.7 micromol x kg(-1) x min(-1) of imTG fatty acids and plasma FFA, respectively, were oxidized according to isotopic measurements. The sum of these two values was not different (P = 0.6) from lipid oxidation by indirect calorimetry (15.4 +/-1.6 micromol x kg(-1) x min(-1)); the isotopic and indirect calorimetry values were correlated (r = 0.79, P<0.005). During exercise, imTG turnover rate was 0.32+/-0.07%/min (6.0+/-2.0 micromol of imTG x kg wet muscle(-1) x min(-1)) and plasma FFA were incorporated into imTG at a rate of 0.7+/-0.1 micromol x kg wet muscle(-1) x min(-1). The imTG pool size did not change during exercise. This pulse-chase, dual tracer appears to be a reasonable approach to measure oxidation and synthesis kinetics of imTG.  相似文献   

16.
Skeletal muscle insulin resistance is a hallmark feature of Type 2 diabetes. Physical exercise/muscle contraction elicits an insulin-independent increase in glucose transport and perturbation of this pathway may bypass defective insulin signaling. To date, the exercise-responsive signaling molecules governing glucose metabolism in skeletal muscle are largely unknown. AMP-activated protein kinase (AMPK) has been suggested as one of the exercise-responsive signaling molecules involved in glucose homeostasis and consequently it has been heavily explored as a pharmacological target for the treatment of Type 2 diabetes. AMPK exists in heterotrimeric complexes composed of a catalytic alpha-subunit and regulatory beta- and gamma-subunits. The gamma3-isoform of AMPK is expressed specifically in skeletal muscle of humans and rodents and this tissue specific expression pattern offers selectivity in AMPK action. Furthermore, mutations in the AMPK gamma3-isoform may provide protection from diet-induced insulin resistance by increasing lipid oxidation in the presence of increased lipid supply. This review highlights the current understanding of the role of the regulatory AMPK gamma3-isoform in the control of skeletal muscle metabolism.  相似文献   

17.
Role of spindle microtubules in the control of cell cycle timing   总被引:14,自引:10,他引:4       下载免费PDF全文
Sea urchin eggs are used to investigate the involvement of spindle microtubules in the mechanisms that control the timing of cell cycle events. Eggs are treated for 4 min with Colcemid at prophase of the first mitosis. No microtubules are assembled for at least 3 h, and the eggs do not divide. These eggs show repeated cycles of nuclear envelope breakdown (NEB) and nuclear envelope reformation (NER). Mitosis (NEB to NER) is twice as long in Colcemid-treated eggs as in the untreated controls. Interphase (NER to NEB) is the same in both. Thus, each cycle is prolonged entirely in mitosis. The chromosomes of treated eggs condense and eventually split into separate chromatids which do not move apart. This "canaphase" splitting is substantially delayed relative to anaphase onset in the control eggs. Treated eggs are irradiated after NEB with 366-nm light to inactivate the Colcemid. This allows the eggs to assemble normal spindles and divide. Up to 14 min after NEB, delays in the start of microtubule assembly give equal delays in anaphase onset, cleavage, and the events of the following cell cycle. Regardless of the delay, anaphase follows irradiation by the normal prometaphase duration. The quantity of spindle microtubules also influences the timing of mitotic events. Short Colcemid treatments administered in prophase of second division cause eggs to assemble small spindles. One blastomere is irradiated after NEB to provide a control cell with a normal-sized spindle. Cells with diminished spindles always initiate anaphase later than their controls. Telophase events are correspondingly delayed. This work demonstrates that spindle microtubules are involved in the mechanisms that control the time when the cell will initiate anaphase, finish mitosis, and start the next cell cycle.  相似文献   

18.
19.
20.
Myosin V is a processive actin-based motor protein that takes multiple 36-nm steps to deliver intracellular cargo to its destination. In the laser trap, applied load slows myosin V heavy meromyosin stepping and increases the probability of backsteps. In the presence of 40 mm phosphate (P(i)), both forward and backward steps become less load-dependent. From these data, we infer that P(i) release commits myosin V to undergo a highly load-dependent transition from a state in which ADP is bound to both heads and its lead head trapped in a pre-powerstroke conformation. Increasing the residence time in this state by applying load increases the probability of backstepping or detachment. The kinetics of detachment indicate that myosin V can detach from actin at two distinct points in the cycle, one of which is turned off by the presence of P(i). We propose a branched kinetic model to explain these data. Our model includes P(i) release prior to the most load-dependent step in the cycle, implying that P(i) release and load both act as checkpoints that control the flux through two parallel pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号