首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
1. Conservation of the federally endangered Roanoke logperch (Percina rex, Jordan and Evermann) necessitates protection of habitat that is critical for all age classes. We examined habitat use patterns of individual logperch to determine: (1) if age classes of logperch in the Nottoway and Roanoke Rivers exhibit habitat selectivity, (2) if age classes differ in habitat use, and (3) if ontogenetic patterns of habitat use differ between the Roanoke and Nottoway river populations. 2. In the summers of 2000 and 2001, we observed 17 young‐of‐year (YOY) logperch [<4 cm total length (TL)], 13 subadult logperch (4–8 cm TL), and 49 adult logperch (>8 cm TL) in the upper Roanoke River, and 40 subadult and 39 adult logperch in the Nottoway River, Virginia. 3. All size classes of Roanoke logperch demonstrated habitat selectivity and logperch used a wide range of habitats in the Roanoke and Nottoway rivers during ontogeny. Habitat use by logperch varied among age classes and between rivers. 4. In the Roanoke River, adult and subadult logperch primarily preferred run and riffle habitat, often over gravel substrate. Subadults were found in lower water velocities and slightly more embedded microhabitats than adults. YOY logperch were found in shallow, stagnant backwaters and secondary channels. In the Nottoway River, both adult and subadult logperch were found over sand and gravel in deep, low‐velocity pools and runs. Subadults were observed in slightly more silted, lower velocity habitat than adults. Shifts in habitat use were more distinct between age classes in the Roanoke River than the Nottoway River. 5. Successful conservation of this species will involve sound understanding of spatial variation in habitat use over logperch life history and preservation of the ecological processes that preserve required habitat mosaics.  相似文献   

2.
The habitat associations of species are vital in determining an organism’s vulnerability to environmental and anthropogenic stress. In the marine environment, post-settlement processes such as ontogenetic shifts in habitat use can affect this vulnerability by subjecting a species to differing biological and environmental conditions at various life stages. This study documents the habitat associations of adult and juvenile butterflyfishes on an inshore reef of the Great Barrier Reef (GBR) to investigate if ontogenetic shifts in habitat use occur, and if such shifts relate to the trophic ecologies of species. Coral-feeding species displayed highly concordant distributions among adults and juveniles. In contrast, adults and juveniles of species with wider dietary selectivities (generalists) displayed significantly different distributions across reef zones. Juvenile generalist feeders were limited to the shallow, patchy areas of the reef flat whilst adult conspecifics displayed comparatively wide distributions. Butterflyfishes with a heavy reliance on corals for food appear to settle preferentially in areas with high abundances of adult conspecifics, which may partially explain why coral specialists are more vulnerable to localized depletion events. In contrast, generalist species utilize distinct habitats as adults and juveniles, suggesting that generalist butterflyfishes expand their ranges and are therefore subjected to changing environmental conditions as they reach adulthood.  相似文献   

3.
Two previously described lacustrine cisco Coregonus spp. morphs [i.e. a small (<300 mm fork length, LF), low‐gillraker (≤44) morph and a large (≥300 mm LF), high‐gillraker (≥45) morph] from Great Slave Lake, NT, Canada, were found to be synonymous with cisco Coregonus artedi. Geometric body shape did not differ between the two size classes nor could they be differentiated by 24 size‐corrected linear measurements, indicating that the two groups had similar phenotypes. Strong, positive correlations between all linear characters and geometric centroid size (a composite variable of fish body length, mass and age) suggested that body morphology changed with age as fish grew. Total gillraker number (NGR) increased with LF according to: NGR = 36·3 + 0·034LF. Differences in gillraker number and phenotype with age and size were explained by shifts in habitat and trophic resource use. Relative abundance within 0–30, 30–60, 60–90 and >90 m depth strata differed between size classes suggesting that morphology changed when fish shifted their habitat as they grew older. Large C. artedi had lower δ13C and slightly higher δ15N, indicating greater reliance on pelagic prey resources (i.e. more or larger zooplankton, such as Mysis spp.), compared to small C. artedi, which relied slightly more on benthic prey. Gillraker shape and number have always been used as key diagnostic characters in coregonine taxonomy; based on the findings presented here, ontogenetic shifts should be accounted for in resulting classifications.  相似文献   

4.
Ontogenetic changes in habitat use by whitefish,Coregonus lavaretus   总被引:1,自引:0,他引:1  
Synopsis The whitefish, Coregonus lavaretus, in the lake Mj?sa exhibited two niche changes during their life cycle. Juveniles (< 25 cm body length) were confined to the shallow (0–30 m) epibenthic zone. Medium sized whitefish (25–35 cm body length) expanded their habitat use to include the deep (30–90 m) epibenthic zone as well as the pelagic zone. From a body length of 35 cm, habitat use was restricted to the deep epibenthic zone. Small fish in the shallow epibenthic zone ate small and medium-sized prey (zooplankton, insect larvae and surface insects). Medium-sized fish in this zone were in addition feeding on the larger amphipod, Pallasea quadrispinosa. In the pelagic zone, the diet of medium-sized whitefish was dominated by zooplankton, although some larger prey like surface insects and age-0 smelt, Osmerus eperlanus, were also eaten. In the deep epibenthic zone, the diet of both medium-sized and large (< 35 cm) whitefish consisted mainly of the large prey P. quadrispinosa.  相似文献   

5.
I used a combination of laboratory experiments and field surveys to examine the role that population-specific predation risk may play in shaping the life history strategy of a stream-dwelling isopod Lirceus fontinalis. Two focal populations were identified that were exposed to different predator types. The first population was exposed to larvae of the streamside salamander (Ambystoma barbouri) and the second to banded sculpin (Cottus carolinae). A laboratory experiment, in which different size classes of prey were offered simultaneously to individual predators, revealed that L. fontinalis suffered greatest mortality risk at small sizes with A. barbouri. Alternatively, with C. carolinae the risk of mortality was independent of size. Life history theory predicts that L. fontinalis from populations exposed to the gape-limited salamander larvae should be larger at maturity relative to individuals from populations exposed to C. carolinae. Field surveys on the two focal populations both within 1 year and across 4 years supported this prediction. Four other populations, two exposed to streamside salamander larvae and two to fish, provided additional support for the prediction. I concluded that L. fontinalis exhibited an adaptive response in size at maturity in response to population-specific predation risk. I then used gut content assays of the major predators to assess whether the population-specific life history strategies adopted by L. fontinalis were successful in avoiding predation.  相似文献   

6.
Environmental Biology of Fishes - Sockeye salmon that spawn downstream of rearing lakes are an important example of the challenges faced by organisms with complex life histories requiring...  相似文献   

7.
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival ( approximately 45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.  相似文献   

8.
9.
Large‐scale environmental changes create challenges for conservation of wildlife, particularly in fenced, insular protected areas where many wildlife populations persist. Moreover, large mammalian herbivores inhabiting spatially and temporally heterogeneous environments face the challenge of securing highly variable forage resources. Mixed feeders like the eland (Taurotragus oryx) can switch between browse and grass, but the cues that elicit that switch are not well understood. We investigated the seasonal diet shift of eland confined to a small fenced reserve and the role of greenness to elicit that shift. Eland changed from a diet in the wet season, consisting of grasses and browse found in woodland and grassland vegetation types, to a diet in the dry season dominated by the greenest browse species still available in woodland vegetation types, as greenness of dry season forage decreased. Our results suggest that eland switch from browsing to grazing in response to phenophase of the grass sward, which could explain the varying selection of grasses versus browse observed across the species range.  相似文献   

10.
Ontogenetic shifts in interactions among annual plants   总被引:6,自引:2,他引:4  
  相似文献   

11.
《Journal of morphology》2017,278(8):1105-1113
Heart position relative to total body length (TL) varies among snakes, with anterior hearts in arboreal species and more centrally located hearts in aquatic or ground‐dwelling species. Anterior hearts decrease the cardiac work associated with cranial blood flow and minimize drops in cranial pressure and flow during head‐up climbing. Here, we investigate whether heart position shifts intraspecifically during ontogenetic increases in TL. Insular Florida cottonmouth snakes, Agkistrodon conanti , are entirely ground‐dwelling and have a mean heart position that is 33.32% TL from the head. In contrast, arboreal rat snakes, Pantherophis obsoleta , of similar lengths have a mean heart position that is 17.35% TL from the head. In both species, relative heart position shifts craniad during ontogeny, with negative slopes = −.035 and −.021% TL/cm TL in Agkistrodon and Pantherophis , respectively. Using a large morphometric data set available for Agkistrodon (N = 192 individuals, 23–140 cm TL), we demonstrate there is an anterior ontogenetic shift of the heart position within the trunk (= 4.56% trunk length from base of head to cloacal vent), independent of head and tail allometry which are both negative. However, in longer snakes > 100 cm, the heart position reverses and shifts caudally in longer Agkistrodon but continues toward the head in longer individuals of Pantherophis . Examination of data sets for two independent lineages of fully marine snakes (Acrochordus granulatus and Hydrophis platurus ), which do not naturally experience postural gravity stress, demonstrate both ontogenetic patterns for heart position that are seen in the terrestrial snakes. The anterior migration of the heart is greater in the terrestrial species, even if TL is standardized to that of the longer P. obsoleta , and compensates for about 5 mmHg gravitational pressure head if they are fully upright.  相似文献   

12.
The lagoon of Moorea Island was characterised by 12 distinct reef zones. Visual censuses allowed us to document the spatial distributions of recently settled juveniles vs adults of 17 nocturnal fish species among the 12 reef zones. Five distinct patterns in habitat use were found: an increase in the number of reef zones used during the adult stage (four species); a decrease in the number of reef zones adults used compared to recently settled juveniles (two species); the use of different reef zones (one species); the use of same reef zones but with relative densities different (one species); and no change in habitat use (nine species). Overall, this study is the first to explore the use of space by a broad range of nocturnal fish taxa to document the patterns and determinism of habitat shifts between juvenile and adult life stages.  相似文献   

13.
Failure to recognize factors contributing to variation in habitat models like resource selection functions (RSFs) can affect their application for projecting probabilities of occurrence, and thereby limit their relevance for conservation and management. We compared seasonal RSFs (2006–2008) for 16 adult female moose (Alces alces) with home ranges located in western Algonquin Provincial Park (APP), Ontario, Canada, to those of 14 adult females located in provincial Wildlife Management Unit (WMU) 49, 40 km west of the protected area. Wildlife and habitat management practices differed between regions: hunting was higher in WMU 49 compared to APP, and APP preserved large tracts of old growth forest rarely found in WMU 49. Seasonal RSFs projected expected similarities in moose resource use between regions (e.g., responses to wetlands and stands of eastern hemlock, Tsuga canadensis [in winter]); however, we also observed differences consistent with the hypothesis that animals, through effects of hunting, would shift habitat use seasonally and in response to roads. We further observed evidence of functional responses in habitat selection due to underlying differences in forestry practices (e.g., responses to stands of old-growth hemlock forest). Given the close proximity and shared biogeographic region between study areas, we believe that observed spatial dynamics in RSFs were ultimately reflective of divergent management strategies between areas and ensuing differences in predation and hunting mortality risk, and functional habitat.  相似文献   

14.
15.
Arieira  Julia  Penha  Jerry  Nunes da Cunha  C.  Couto  E. Guimarães 《Plant and Soil》2016,406(1-2):219-230
Plant and Soil - We evaluated whether habitat association is consistent between two tree life history stages, young and adult, and whether spatial gradients explain species composition variation....  相似文献   

16.
The feeding ecology of three piscivorous fish species (perch (Perca fluviatilis), pike (Esox lucius) and burbot (Lota lota)), was studied in the subarctic Pasvik watercourse (69 °N), northern Norway and Russia. All three species primarily occupied the benthic habitats in the watercourse. Perch and burbot exhibited distinct ontogenetic niche shifts in food resource use, perch changing from a dominance of zooplankton to zoobenthos to fish, and burbot from zoobenthos to fish. Fish prey dominated the diet of all the investigated size-classes of pike, but small-sized pike (<20 cm) were not represented in the sample. Fish prey size was positively related to predator size in all three species. Whitefish (Coregonus lavaretus) was the dominant prey of pike and large-sized burbot and perch. Nine-spined sticklebacks (Pungitius pungitius) was also an important prey and appeared to be a dietary stepping-stone enhancing the transition from invertebrate feeding to consumption of large-sized whitefish prey for all three predators. A cluster analysis separated the different size groups of the three predator species into five functional feeding groups, most of them containing two or all three species. Within these feeding groups, and especially among the piscivorous size-classes, there was a strong and significant interspecific overlap in prey selection, and the dietary similarities between the species were in general much larger than the intraspecific similarities between ontogenetic stages. All three piscivorous species are important top predators in the aquatic food web of the watercourse, and their ontogenetic diet shifts and resource partitioning patterns generate a substantial food web complexity in this subarctic ecosystem.  相似文献   

17.
Almost all organisms on Earth exhibit ontogenetic niche shifts, which causes great phenotypic variation among individuals and is thus considered to critically mediate community structure and dynamics. In contrast, community ecology has traditionally assumed that species are composed of identical individuals with invariant traits and ignored the potentially important ecological roles of ontogenetic niche shifts. To bridge the gap, here I briefly review ecologically relevant examples which show that basic insights of species-based community theories can be revised by including the ontogenetic perspective. Specifically, I focus on the most representative animals in the study of ontogenetic niche shifts, i.e., fish, insects, and amphibians. Notably, their ontogenetic niche shifts create novel views of community structure: (1) ontogenetic diet shifts of predatory fish couple pelagic and benthic food webs in aquatic systems, (2) ontogenetic shifts in interaction types of pollinating insects couple herbivory and pollination networks in terrestrial systems, and (3) ontogenetic habitat shifts of amphibians and aquatic insects couple aquatic and terrestrial metacommunities at interface areas. Dynamic models of such stage-structured communities suggest that their ontogenetic niche shifts may affect the community resilience and disturbance responses. Exploring more complex systems (e.g., where many species undergo ontogenetic niche shifts several times or continuously) is a future direction, for which describing body size relationships between interacting organisms would be a promising approach. I conclude that both theoretical and empirical advances are needed to facilitate the ontogenetic perspective for better understanding mechanisms underlying biodiversity and ecosystem functioning which are increasingly threatened by anthropogenic disturbance.  相似文献   

18.
19.
《Zoology (Jena, Germany)》2015,118(6):403-412
Snakes possess an elongated body form and serial placement of organs which provides the opportunity to explore historic and adaptive mechanisms of organ position. We examined the influence of body size and sex on the position of, and spatial associations between, the heart, liver, small intestine, and right kidney for ten phylogenetically diverse species of snakes that vary in body shape and habitat. Snake snout–vent length explained much of the variation in the position of these four organs. For all ten species, the position of the heart and liver relative to snout–vent length decreased as a function of size. As body size increased from neonate to adult, these two organs shifted anteriorly an average of 4.7% and 5.7% of snout–vent length, respectively. Similarly, the small intestine and right kidney shifted anteriorly with an increase in snout–vent length for seven and five of the species, respectively. The absolute and relative positioning of these organs did not differ between male and female Burmese pythons (Python molurus). However, for diamondback water snakes (Nerodia rhombifer), the liver and small intestine were more anteriorly positioned in females as compared to males, whereas the right kidney was positioned more anteriorly for males. Correlations of residuals of organ position (deviation from predicted position) demonstrated significant spatial associations between organs for nine of the ten species. For seven species, individuals with hearts more anterior (or posterior) than predicted also tended to possess livers that were similarly anteriorly (or posteriorly) placed. Positive associations between liver and small intestine positions and between small intestine and right kidney positions were observed for six species, while spatial associations between the heart and small intestine, heart and right kidney, and liver and right kidney were observed in three or four species. This study demonstrates that size, sex, and spatial associations may have potential interacting effects when testing evolutionary scenarios for the position of snake organs.  相似文献   

20.
Fishes of the characid genus Roeboides are documented as lepidophagous, but the degree of specialization on scales varies between species. This study examines ontogenetic changes in morphology and diet of Roeboides dayi and Roeboides affinis from Venezuela. Juveniles of both species feed on microcrustacea and insects during the wet season, when availability of these resources is greatest. As aquatic habitat decreases during the dry season, insect and microcrustacea availability decreases and fish densities increase. As the fish densities increase, scale consumption becomes more profitable. Interspecific differences in the degree of specialization of the teeth and jaws was associated with the degree of scale feeding. Adult R. dayi consumed scales in approximately equal proportions to insects. Adult R. affinis consumes approximately 100% scales, and has more specialized head morphology than R. dayi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号