首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the intention to modulate gene expression in vascular mural cells of remodeling vessels, we generated and characterized transgenic mouse lines with Cre recombinase under the control of the platelet-derived growth factor receptor-β promoter, referred to as Tg(Pdgfrb-Cre)(35Vli) . Transgenic mice were crossed with the Gt(ROSA)26Sor(tm1Sor) strain and examined for Cre activation by β-galactosidase activity, which was compared with endogenous Pdgfrb expression. In addition, Pdgfrb-Cre mice were used to drive expression of a conditional myc-tagged Cthrc1 transgene. There was good overlap of β-galactosidase activity with endogenous Pdgfrb immunoreactivity. However, dedifferentiation of vascular mural cells induced by carotid artery ligation revealed a dramatic discrepancy between ROSA26 reporter activity and Pdgfrb promoter driven Cre dependent myc-tagged Cthrc1 transgene expression. Our studies demonstrate the capability of the Pdgfrb-Cre mouse to drive conditional transgene expression as a result of prior Cre-mediated recombination in tissues known to express endogenous Pdgfrb. In addition, the study shows that ROSA26 promoter driven reporter mice are not suitable for lineage marking of smooth muscle in remodeling blood vessels.  相似文献   

2.
Transplantation studies and cell lineage analyses require the ability to explicitly distinguish morphologically identical cells that have an identifiable marker indicating their origin in vivo. Several reporter mouse strains have been generated for such studies, but pancellular detection of the marker in all tissues has not been achieved. In this report, we describe the generation of transgenic mice that express enhanced green fluorescent protein (EGFP) under control of a 187 kb bacterial artificial chromosome (BAC) containing the murine ROSA26 locus, and show several advantages over existing EGFP reporter lines. It is demonstrated that EGFP is ubiquitously and reproducibly expressed from the murine BAC transgene in all organs and tissues analyzed, including the hematolymphoid compartment. Using this new reporter strain in hematopoietic cell transplantation studies, it is demonstrated that leukocytes in recipients maintain uniform transgene expression and are easily distinguished by flow cytometric analysis of live cells. The results suggest that the ROSA26 BAC is an efficient strategy for expressing complex transgene cassettes in vivo.  相似文献   

3.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

4.
消化道细胞表达Cre重组酶转基因小鼠的功能鉴定   总被引:1,自引:0,他引:1  
目的:检测白蛋白启动子介导的Cre重组酶转基因小鼠Alb-Cre-2中Cre重组酶的组织分布及其在体内介导基因重组的作用。方法:将Alb-Cre小鼠与Smad4条件基因打靶小鼠交配,利用PCR对Cre重组酶介导重组的组织特异性进行检测;然后,将Alb-Cre-2转基因小鼠与ROSA26报告小鼠交配,利用LacZ染色对双转基因阳性子代小鼠进行检测。结果:PCR结果显示心、肺、胰、脑及消化道中Cre重组酶介导的Smad4基因发生重组;LacZ染色进一步表明Cre重组酶在肝细胞、胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞、大肠柱状细胞及空泡细胞中特异性表达,并介导ROSA位点LoxP序列间的重组。结论:Alb-Cre-2转基因小鼠在消化道中具有一定的组织特异性,只在胃壁细胞、空肠潘氏细胞、回肠杯状细胞、大肠杯状细胞,大肠柱状细胞及空泡细胞等细胞类型中特异性表达,并能在体内成功地介导这些消化道上皮细胞基因组上LoxP位点间的重组,是一种研制在消化道特定细胞中特异性基因剔除小鼠的良好工具小鼠。  相似文献   

5.
We generated transgenic mice bearing a tamoxifen-dependent Cre recombinase expressed under the control of the dopamine-β-hydroxylase promoter. By crossing to the ROSA26 reporter mice we show that tamoxifen-induced Cre recombinase in adult mice specifically activates β-galactosidase expression in differentiated noradrenergic neurons of the central and peripheral nervous system. Tamoxifen application in adult mice did not induce β-galactosidase activity in parasympathetic neurons that transiently express DBH during development. Thus, this transgenic mouse line represents a valuable tool to study gene function in mature noradrenergic neurons by conditional inactivation.  相似文献   

6.
Conditional alleles containing LoxP recombination sites, in conjunction with Cre recombinase delivered by a variety of means, allows for spatial and temporal control of gene expression in mouse models. Here we describe a mouse strain in which a luciferase (Luc) cDNA, preceded by a LoxP-stop-LoxP (L-S-L) cassette, was introduced into the ubiquitously expressed ROSA26 locus. Mouse embryo fibroblasts derived from this strain expressed luciferase after Cre-mediated recombination in vitro. ROSA26 L-S-L-Luc/+ mice expressed luciferase in a diffuse or liver-restricted pattern, as determined by noninvasive, bioluminescent imaging, when crossed to transgenic mice in which Cre was under the control of a zygotically expressed (EIIA-Cre), or a liver-restricted (albumin-Cre), promoter, respectively. Organ-specific luciferase expression was also seen after intraparenchymal administration of an adenovirus encoding Cre. The ROSA26 L-S-L-Luc/+ strain should be useful for characterizing Cre mouse strains and for following the fate of cells that have undergone Cre-mediated recombination in vivo.  相似文献   

7.
血管内皮细胞特异表达Cre重组酶转基因小鼠的建立   总被引:4,自引:0,他引:4  
血管内皮细胞参与血管形成、血管稳态维持、血栓形成、炎症和血管重建等生理和病理过程。为了便于通过Cre-LoxP系统研究相关基因在血管内皮细胞中的功能,创建了Tie2-Cre转基因小鼠,利用Tie2基因的启动子驱动Cre重组酶基因在血管内皮细胞中表达。经基因组PCR和Southern Blot鉴定有6只小鼠在基因组上整合有Cre基因,整合率为11%。为了验证Cre重组酶的剪切活性和表达组织分布,我们将Tie2-Cre转基因小鼠分别与Smad4条件基因打靶小鼠和报告小鼠ROSA26交配。Tie2-Cre;Smad4^co/+小鼠的多个组织的基因组DNA的PCR结果显示,Cre重组酶在所有包含血管内皮细胞的组织中表达并能介导LoxP间的重组。Tie2-Cre;ROSA26双转基因胚胎LacZ染色结果显示,Cre重组酶在所有被检测组织的血管内皮细胞中特异性表达。因此.Tie2-Cre转基因小鼠可作血管内皮细胞谱系分析和在血管内皮细胞进行条件基因打靶的理想工具小鼠。  相似文献   

8.
We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty- four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (beta-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses beta-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express beta-gal exclusively in the kidney. Histological analysis of the kidneys showed that beta-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined.  相似文献   

9.
The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.  相似文献   

10.
Zhao Z  Hou N  Sun Y  Teng Y  Yang X 《遗传学报》2010,37(9):647-652
Parietal cells are one of the largest epithelium cells of the mucous membrane of the stomach that secrete hydrochloric acid.To study the function of gastric parietal cells during gastric epithelium homeostasis,we generated a transgenie mouse line,namely,Atp4b-Cre,in which the expression of Cre recombinase was controlled by a 1.0 kb promoter of mouse β-subunit of H+-,K+-ATPase gene(Atp4b).In order to test the tissue distribution and excision activity of Cre recombinase in vivo,the Atp4b-Cre transgenic mice were bred with the reporter strain ROSA26 and a mouse strain that carries Smad4 conditional alleles(Smad4Co/Co).Multiple-tissue PCR of Atp4b-Cre;Smad4Co/+mice revealed that the recombination only happened in the stomach.As indicated by LacZ staining,ROSA26;Atp4b-Cre double transgenic mice showed efficient expression of Cre recombinase within the gastric parietal cells.These results showed that this Atp4b-Cre mouse line could be used as a powerful tool to achieve conditional gene knockout in gastric parietal cells.  相似文献   

11.
目的:探索将增强子应用于构建Cre转基因小鼠品系,为以条件基因敲除为基础的基因功能研究提供更多的工具。方法:通过PCR方法从小鼠的细菌人工染色体扩增UH增强子片段,构建含有Hsp68基础启动子、增强子UH、Cre重组酶基因和SV40 polyA的转基因载体pLW400,将3.3 kb的转基因片段通过显微注射导入小鼠受精卵;为了检测Cre在转基因小鼠中的表达,将转基因一代小鼠与纯合子ROSA26报告小鼠(R/R)交配,收集第14 d胚胎期(E14)的舌组织进行LacZ染色检测鉴定。结果:经鉴定,31只子代小鼠中有6只携带外源基因,整合率为19.4%;与R/+对照相比,E14期的双基因型Cre,R/+舌组织为阳性结果(蓝色)。这表明Cre基因在转基因小鼠舌组织内得到表达,并在体内介导ROSA26基因座loxP位点间的重组,且有效删除了2个loxP之间的片段,从而启动了LacZ基因的表达。结论:构建了UH增强子-Hsp68Cre的转基因小鼠,在舌肌中特异表达Cre基因,提示增强子可以被选择应用于Cre转基因小鼠的构建;为舌肌的发育和再生研究奠定了基础。  相似文献   

12.
Osteoblasts participate in bone formation,bone mineralization,osteoclast differentiation and many pathological processes.To study the function of genes in osteoblasts using Cre-LoxP system,we generated a mouse line expressing the Cre recombinase under the control of the rat Collagenlal (Coilal) promoter(Coilatl-Cre).Two founders were identified by genomic PCR from 16 offsprings.and the integration efficiency is 12.5%.In order tO determine the tissue distribution and the activity of Cre rccombinase in the transgenic mice,the Collal-Cre transgenic mice were bred with the ROSA26 reporter strain and a mouse strain that carries Smad4 conditional alleles (Smad4co/co).Multiple tissue PCR of Collal-Cre;Smad4co/ mice revealed the restricted Cre activity in bone tissues containing osteoblasts and tendon.LacZ staining in the Coilal-Cre;ROSA26 double transgenic mice revealed that the Cre recombinase began to express in the osteoblasts of calvaria at E14.5.Cre activity was observed in the osteoblasts and osteocytes of P10 double transgenic mice.All these data indicated that the Collal-Cre transgenic mice could Serve as a valuabletool for osteoblast lineage analysis and conditional gene knockout in osteoblasts.  相似文献   

13.
Embryonic or neonatal lethality of mice with targeted disruption of critical genes preclude them from further characterization of specific roles of these genes during postnatal development and aging. In order to study the molecular roles of such genes in teeth, we generated transgenic mouse lines expressing bacteriophage Cre recombinase under the control of the mouse dentin sialophosphoprotein (dspp) gene promoter. The expression of Cre recombinase protein was mainly detected in the nucleus of the odontoblasts. The efficiency of Cre activity was analyzed by crossing the Dspp-Cre mice with ROSA26 reporter (R26R) mice. The offspring with both genotypes have shown specific deletion of intervening sequences flanked by loxP sites upstream of the reporter gene, thereby facilitating the expression of the beta-galactosidase (beta-gal) gene in the teeth. The activity of beta-gal was initially observed in the odontoblasts of 1-day-old mice and increased with tooth development. Almost all of the odontoblasts have shown lacZ activity by 3 weeks of age. We could not detect Cre recombinase activity in any other cells, including ameloblasts. These studies indicate that the Dspp-Cre transgenic mice will be valuable to generate odontoblast-specific gene knockout mice so as to gain insight into the molecular roles of critical genes in the odontoblasts during dentinogenesis.  相似文献   

14.
The androgen signaling pathway, mediated through the androgen receptor (AR), is critical in prostate tumorigenesis. However, the precise role of AR in prostate cancer development and progression still remains largely unknown. Specifically, it is unclear whether overexpression of AR is sufficient to induce prostate tumor formation in vivo. Here, we inserted the human AR transgene with a LoxP-stop-loxP (LSL) cassette into the mouse ROSA26 locus, permitting "conditionally" activated AR transgene expression through Cre recombinase-mediated removal of the LSL cassette. By crossing this AR floxed strain with Osr1-Cre (odd skipped related) mice, in which the Osr1 promoter activates at embryonic day 11.5 in urogenital sinus epithelium, we generated a conditional transgenic line, R26hAR(loxP):Osr1-Cre+. Expression of transgenic AR was detected in both prostatic luminal and basal epithelial cells and is resistant to castration. Approximately one-half of the transgenic mice displayed mouse prostatic intraepithelial neoplasia (mPIN) lesions. Intriguingly, four mice (10%) developed prostatic adenocarcinomas, with two demonstrating invasive diseases. Positive immunostaining of transgenic AR protein was observed in the majority of atypical and tumor cells in the mPIN and prostatic adenocarcinomas, providing a link between transgenic AR expression and oncogenic transformation. An increase in Ki67-positive cells appeared in all mPIN and prostatic adenocarcinoma lesions of the mice. Thus, we demonstrated for the first time that conditional activation of transgenic AR expression by Osr1 promoter induces prostate tumor formation in mice. This new AR transgenic mouse line mimics the human disease and can be used for study of prostate tumorigenesis and drug development.  相似文献   

15.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

16.
A transgenic mouse line that expresses Cre recombinase under control of the human thyroid peroxidase (TPO) gene promoter was established. The activity and specificity of the TPO-driven Cre recombinase were examined by using Northern blotting and by crossing with the ROSA26 reporter transgenic mouse line. In the latter mice, Cre-mediated recombination occurred only in the thyrocytes, and recombination commenced around embryonic day 14.5, at the time during thyroid organogenesis when TPO expression begins. This study demonstrates that the TPO-Cre transgenic mouse is a powerful tool to specifically delete loxP-inserted (floxed) genes in thyrocytes and will be of great value in the study of thyrocyte-specific genes during development and/or in adult thyroids.  相似文献   

17.
甲状腺转录因子-2(TTF-2)在个体发生中的表达具有高度组织特异性和发育阶段特异性,是甲状腺、腭等器官正常发育的重要调节因子。为研究TTF-2基因活动规律和表达模式发生变化,对胚胎发育过程中器官发生产生的影响,为揭示新生儿出生缺陷形成的分子机制积累资料,构建了TTF-2基因重组表达载体pBROAD3-titf-2,通过显微注射法将目的基因注入小鼠受精卵的雄原核,成功建立了TTF-2持续表达的转基因小鼠模型。  相似文献   

18.
Wnt signaling plays an important role in regulating cortical and hippocampal development, but many of the other molecular mechanisms underlying dorsal telencephalic development are largely unknown. We are taking advantage of the highly regionalized expression patterns of signaling components of the Wnt pathway to generate new mouse lines that will be useful for studying forebrain development. Here, we describe a transgenic mouse line where Cre is driven by the promoter of the Wnt receptor, Frizzled10. In these mice, Cre activity is mainly detected in the dorsal telencephalon during development and is confined to the pyramidal cell fields in the adult hippocampus. The Cre recombinase has very high efficiency when assayed by crossing the transgenic line with the ROSA26 reporter line. Thus, this Cre line will be useful for the study of dorsal telencephalic development and conditional inactivation of target genes in the cortex and hippocampus.  相似文献   

19.
Here we describe a triple transgenic mouse system, which combines the tissue specificity of any Cre-transgenic line with the inducibility of the reverse tetracycline transactivator (rtTA)/tetracycline-responsive element (tet-O)-driven transgenes. To ensure reliable rtTA expression in a broad range of cell types, we have targeted the rtTA transgene into the ROSA26 locus. The rtTA expression, however, is conditional to a Cre recombinase-mediated excision of a STOP region from the ROSA26 locus. We demonstrate the utility of this technology through the inducible expression of the vascular endothelial growth factor (VEGF-A) during embryonic development and postnatally in adult mice. Our results of adult induction recapitulate several different hepatic and immune cell pathological phenotypes associated with increased systemic VEGF-A protein levels. This system will be useful for studying genes in which temporal control of expression is necessary for the discovery of the full spectrum of functions. The presented approach abrogates the need to generate tissue-specific rtTA transgenes for tissues where well-characterized Cre lines already exist.  相似文献   

20.
alpha-Internexin is a 66 kDa neuronal intermediate filament protein found most abundantly in the neurons of the nervous systems during early development. To characterize the function of mouse alpha-internexin promoter, we designed two different expression constructs driven by 0.7 kb or 1.3 kb of mouse alpha-internexin 5'-flanking sequences; one was the enhanced green fluorescent protein (EGFP) reporter for monitoring specific expression in vitro, and the other was the cre for studying the functional DNA recombinase in transgenic mice. After introducing DNA constructs into non-neuronal 3T3 fibroblasts and a neuronal Neuro2A cell line by lipofectamine transfection, we observed that the expression of EGFP with 1.3 kb mouse alpha-internexin promoter was in a neuron-dominant manner. To establish a tissue-specific pattern in the nervous system, we generated a transgenic mouse line expressing Cre DNA recombinase under the control of 1.3 kb alpha-Internexin promoter. The activity of the Cre recombinase at postnatal day 1 was examined by mating the cre transgenic mice to ROSA26 reporter (R26R) mice with knock-in Cre-mediated recombination. Analyses of postnatal day 1 (P1) newborns showed that beta-galactosidase activity was detected in the peripheral nervous system (PNS), such as cranial nerves innervating the tongue and the skin as well as spinal nerves to the body trunk. Furthermore, X-gal-labeled dorsal root ganglionic (DRG) neurons showed positive for alpha-Internexin in cell bodies but negative in their spinal nerves. The motor neurons in the spinal cord did not exhibit any beta-galactosidase activity. Therefore, the cre transgene driven by mouse alpha-internexin promoter, described here, provides a useful animal model to specifically manipulate genes in the developing nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号