首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survival and reproductive success of hermit crabs is intrinsically linked to the quality of their domicile shells. Because damaged or eroded shells can result in greater predation, evaluating shell structure may aid our understanding of population dynamics. We assessed the structural attributes of Cerithium atratum shells through assessments of (a) density using a novel approach involving computed tomography and (b) tolerance to compressive force. Our goal was to investigate factors that may influence decision making in hermit crabs, specifically those that balance the degree of protection afforded by a shell (i.e. density and strength) with the energetic costs of carrying such resources. We compared the density and relative strength (i.e. using compression tests) of shells inhabited by live gastropods, hermit crabs (Pagurus criniticornis) and those found empty in the environment. Results failed to show any relationship between density and shell size, but there was a notable effect of shell density among treatment groups (gastropod/empty/hermit crab). There was also a predictable effect of shell size on maximum compressive force, which was consistent among occupants. Our results suggest that hermit crabs integrate multiple sources of information, selecting homes that while less dense (i.e. reducing the energy costs of carrying these resources), still offer sufficient resistance to compressive forces (e.g. such as those inflicted by shell-breaking predators). Lastly, we show that shell size generally reflects shell strength, thus explaining the motivation of hermit crabs to search for and indeed fight over the larger homes.  相似文献   

2.
The symbiotic associates of hermit crabs (excluding parasites and flora) are reviewed worldwide. The review includes species found on the shells occupied by hermit crabs (epibiotic species), species boring into these shells (endolithic species), species living within the lumen of the shell (either free-living or attached to the shell), species attached to the hermit crabs themselves, and hypersymbionts. In total over 550 invertebrates, from 16 phyla are found associated with over 180 species of hermit crabs. Among these associates, 114 appear to be obligate commensals of hermit crabs, 215 are facultative commensals, and 232 are incidental associates. The taxa exhibiting the highest number of associates are arthropods (126), polychaetes (105), and cnidarians (100). The communities of species associated with Dardanus arrosor, Paguristes eremita, Pagurus bernhardus, Pagurus cuanensis, and Pagurus longicarpus are the best studied and harbor the most diverse assemblages of species. While trends in biodiversity of hermit crab assemblages do not follow predicted patterns (e.g., hermit crabs within the Indo-West Pacific do not harbor more species than those from temperate regions), this is suggested to reflect a lack of sampling rather than a true representation of the number of associates. Hermit crabs date to at least the Cretaceous and provided a niche for a number of groups (e.g., hydractinians, bryozoans, polydorids), which were already associates of living gastropods. Apparently hermit crab shells initially supplied a substrate for settlement and then these symbiotic relationships were reinforced by enhanced feeding of symbionts through the activity of the hosts. Through their use and recycling of gastropods shells, hermit crabs are important allogenic ecosystem engineers in marine habitats from the intertidal to the deep sea. Hermit crabs benefit from some symbionts, particularly cnidarians and bryozoans, through extension of shell apertures (alleviating need to switch into new shells) and by providing protection from predators. However, hermit crabs are also negatively impacted (e.g., decreased reproductive success, increased predation) by some symbionts and a review of egg predators is provided. Thus, the symbiotic relationships between hermit crabs and many associates are difficult to characterize and often exhibit temporal changes depending on environmental and biological factors. Research on the biology of these symbionts and the costs/benefits of their associations with hermit crabs are analyzed. While some associates (e.g., Hydractinia spp.) have been studied in considerable detail, for most associations little is known in terms of the impacts of symbionts on hosts, and future experimental studies on the multitude of relationships are suggested.  相似文献   

3.
Specific chemicals in the environment evoke significant changes in the behavior of many aquatic organisms. We studied in the laboratory whether satiated individuals of the hermit crab, Pagurus longicarpus Say 1817, adjust their investigatory behavior towards an empty, optimal gastropod shell according to differences of chemical context. We also explored to what extent shell investigation by a crab in the same hunger state was affected by occupying an inadequately sized shell. Our results confirmed in part previous findings that crabs can discriminate the odor of freshly dead snails from the odor of freshly dead conspecifics. In the presence of the former odor, crabs inhabiting shells of inadequate size were more responsive and active than those in better-fitting shells. To the contrary, regardless of the quality of the inhabited shell, P. longicarpus remained practically motionless when presented with the odor of freshly dead conspecifics, possibly because the risks of incurring in predators would outweigh the benefits of acquiring a new shell. Unexpectedly, we found that crabs in both types of shell quality exhibited nearly the same behavior in control water, while crabs in adequate shells were more responsive in the presence of food odor. Individuals appeared insensitive to the odor of live snails; indeed, only one hermit crab species has been seen removing living snails from their shells. An intriguing result was that water conditioned by the odors of live conspecifics exerted a strong effect on all the individuals by inducing an intense shell investigation. Our study underlines the central role exerted by chemical detection in hermit crabs' behavior and demonstrates the existence of a complex interplay among chemical context, the physiological state of the animal, and the ecological pressures of the habitat.  相似文献   

4.
Guillermina Alcaraz  Elsah Arce 《Oikos》2017,126(9):1299-1307
Prey exposed to predators with different hunting and feeding modes are under different selective pressures, therefore it is expected that they should exhibit plastic and adaptive antipredator responses according to current risks. The hermit crab Calcinus californiensis faces two contrasting predators, the shell peeler Arenaeus mexicanus that hunts by active searching and the shell breaker Eriphia squamata that hunts by ambush. In order to discover whether C. californiensis displays plastic responses depending on the type of predatory challenge, we examined the shell size preference, the hiding time, and the escape velocity of hermit crabs in the presence of chemical cues from a shell peeler, a shell breaker, and a control. We also examined the role of shell fit on the escape velocity of the hermit crabs in natural tidal pools. Crabs chose shells with a loose fit (relatively large shells) in the presence of chemical cues from the shell peeler Arenaeus and shells with a tight fit when exposed to cues from the shell breaker Eriphia. The hermit crabs hid for shorter times and moved away faster from Eriphia than from Arenaeus stimulus. The use of a tight shell favours faster movement away from the shell breaker (pre‐capture strategy), but prevents the crab retracting deeper inside the shell, increasing the risk of be eaten by the shell peeler once captured. Hence, the use of loose shells that protect the crab from the shell peeler hinders fast escape. This study shows specific and plastic antipredatory responses to contrasting predators, each bringing adaptive benefits at different levels of the predator sequence.  相似文献   

5.
Hermit crabs have two antipredator tactics: taking refuge in its shell and fleeing. We examined the following two hypotheses using the hermit crab Pagurus filholi : (1) hermit crabs change their preference for shell types that they take refuge in and/or change the timing of fleeing (i.e. the duration of refuge in the shell) when they perceive a predator threat; (2) the type of shell that a hermit crab occupies affects the fleeing tactic of the individual. Under the stimulus of a crushed conspecific, hermit crabs changed neither their preference for shell species nor their refuge duration. On the other hand, under the stimulus of the predatory crab Gaetice depressus , hermit crabs increased their preference for Batillaria cumingi shells, which provide superior protection against predators, and shortened their refuge duration in the shells even when they occupied those effective against predation. Refuge duration was longer in B. cumingi shells than in the more vulnerable shells of Homalopoma sangarense . These results suggest that both antipredator defences (changing shell and timing of fleeing) are induced by the stimulus of a predator, and the timing of fleeing is affected by the shell type occupied.  相似文献   

6.
Shell preference patterns of two common hermit crabs from hard bottom reef flats on the Caribbean coast of Panama are examined in relation to the predation pressures and physical stresses of their habitat. Clibanarius antillensis Stimpson lives in the high intertidal habitat and minimizes exposure to predators by seeking refuge during high tides. It prefers high-spired shells which maximize protection from thermal stress. Calcinus tibicen Herbst avoids tidal emersion and prefers low-spired shells which enhance resistance to the predators common on Caribbean reef flats.The results are compared with similar results from the tropical eastern Pacific Bay of Panama. Shell-crushing predation on Caribbean hermit crabs is suggested to differ quantitatively and qualitatively from predation on hermit crabs in the Bay of Panama. Predation on hermit crabs in the Bay of Panama is more intense and effects larger individuals than predation on Caribbean reef flat hermit crabs. In addition, shell-crushing predation on hermit crabs in the Bay of Panama is primarily from teleost fish predators (Diodon spp.), while predation on Caribbean hermit crabs is primarily by bottom-dwelling crustaceans.Differences in predation pressures and tidal regimes between the Caribbean and Pacific coasts of Panama are reflected in the shell preferences and behavior of hermit crabs from the two areas.  相似文献   

7.
Complex environments present substantial spatio-temporal uncertainty in where and when rare ecological resources become available. How animals navigate this uncertainty to turn the seemingly unpredictable into the predictable is a fundamental question in evolutionary ecology. Here we use subtidal hermit crabs (Pagurus acadianus) as a model system to experimentally test in the field how animals resolve spatio-temporal uncertainty in resource availability. Quadrat sampling within the subtidal zone revealed that hermit crabs face an extreme ecological challenge, based on the rarity of empty shells across space and time. We show how this spatio-temporal uncertainty is ultimately resolved using long-distance chemical cues, which are associated with non-destructive shell predation on living gastropods, the original source of shells. By experimentally releasing cues that simulated the chemical by-products of predation, we reveal that certain flesh cues provide fine-grained information about the precise spatial and temporal window of new shell availability. These cues were most attractive to individuals with the greatest existing resource needs, and in the absence of this information individuals were highly constrained in their ability to discover newly available resources. Broadly, these experiments reveal that exploiting simple cues from heterospecific predators can provide a solution to the general ecological challenge of finding resources that are rare in space and time.  相似文献   

8.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

9.
How energetic cost of locomotion affects foraging decisions, and its metabolic consequences are poorly understood. In several groups of animals, including hermit crabs, exploratory walking enhances the efficiency of foraging by increasing the probability of finding more and better food items; however, the net gain of energy will only be enhanced if the costs of walking are lower than the benefits of enhanced food acquisition. In hermit crabs, the cost of walking increases with the mass of the shell type occupied. Thus, we expected that hermit crabs should adjust their foraging strategy to the cost of movement in different shells. We assessed the foraging, the quantity and quality of food intake, and the energetic cost of maintenance of hermit crabs paying different costs of foraging in the wild. The exploratory walking negatively correlated with shell mass, showing that hermit crabs use different foraging strategies in response to the expenditure required to move. Hermit crabs deal with high energetic costs of foraging in heavy shells by reduces their exploratory walking and overall metabolic rate, as a strategy to maximize the net energy intake. This study integrates behavioral and metabolic compensations as a response to foraging at different costs in natural conditions.  相似文献   

10.
A series of experiments at two tropical locations tested the ability of land hermit crabs Coenobita perlatus (H. Milne Edwards) and Coenobita compressas (H. Milne Edwards) to detect and respond to odors of dead conspecifics. An attraction array compared numbers of crabs attending hidden food odors and dead conspecific odors. Pit experiments tested crab shell-acquisition behaviors at different hidden odors. Bucket experiments confined crabs collected from various categories (feeding crabs, wandering crabs and crabs aggregated at dead conspecific odors) and tested behavioral responses to odors and an empty shell. Land hermit crab behavior at both sites was similar. Crabs were attracted to dead conspecific odors up to 10 times more than to food odors. Crabs attracted to dead conspecifics displayed significantly more shell-acquisition behaviors: touching other crab's shells in an exploratory manner and switching shells if an empty shell was available. In buckets, crabs from each category switched into shells. Results are compared to previous reports of similar shell-seeking behaviors by marine hermit crabs in response to dead conspecific odors. It is suggested that responding to dead conspecific odors for shell source location is an evolutionarily conserved behavior developed before hermit crabs became terrestrial.  相似文献   

11.
The epifauna on gastropod shells occupied by the hermit crabs Pagurus pollicaris (Say) and P. longicarpus (Say) was examined, as was the utilization of shells by these two hermit crabs. In the study area in Tampa Bay, Florida, shells were not a limiting factor to the hermit crab population, and there apparently was little competition for shells. Interspecific competition for shells was limited because the two hermit crab species differed in size and hence occupied shells of different sizes. The total number and density of most epifaunal species were higher on shells occupied by hermit crabs than on unoccupied shells, possibly because hermit crabs prevent their shells from being buried and hence lengthen the time the epifaunal community can grow and develop. The hermit crab species also appeared to affect the epifaunal community, for the total number and density of most epifaunal species were larger on shells occupied by P. pollicaris than P. longicarpus. With increasing shell size, the populations of most epifaunal species, also were larger but not their density. Least influential in affecting the epifaunal community was the species of shells.  相似文献   

12.
Aim To examine patterns of abundance, density, size and shell use in land hermit crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as 46 m−2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. Main conclusions Although densities of land hermit crabs varied, they were relatively high on many islands, and land hermit crabs may play an important role in these insular food webs. Patterns of shell use may be strongly restricted by island geomorphology: irregular shorelines provide relatively more habitat for the gastropod species that account for the majority of adopted shells and the steep sides of the islands prevent the accumulation of marine gastropod shells. The size of adult hermit crabs appears to be limited by the relatively small gastropod shells available, while the abundance of hermit crabs may be limited by the number of shells available.  相似文献   

13.
Hermit crabs are known to carry a gastropod shell to prevent abdomen from injuring by predators and cannibalism. One can regard the shell as a boundary between inside and outside worlds for hermit crabs. We conducted an experiment in which hermit crabs without shells deal with artificial tubes. The situation without a shell requires a part of experimental setup to be regarded as inside by each hermit crab. We accept the distance of locomotion as the indication of the estimation process performed by an individual on parts of the experimental setup. As a result, behavioral hierarchy was found with respect to the way of constituting the boundary. At each level of hierarchy, active behavior produced 1/f noise in comparison with the passive one. It suggests that finding 1/f noise at each level of hierarchy may lead to a lower level of hierarchy in another situation.  相似文献   

14.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

15.
Hermit crabs, humans and Mozambique mangroves   总被引:1,自引:0,他引:1  
There is a complex interrelationship between upper shore hermit crabs (such as Coenobita sp. and Clibanarius sp.), coastal human populations and mangrove forests in Mozambique. The abundance, activity, shell selection and behaviour of three species of hermit crab are related to the level of mangrove cover. With increased density of mangrove trees, the study species of hermit crab changed in abundance, tended to become diurnal, spent more time feeding and were clustered in larger groups when doing so, and selected longer spired shells. All five of the same variables are also linked to the proximity and activity of humans through both direct and indirect actions. Direct effects included a tendency to nocturnal activity with proximity to human activity; indirect effects included increased and more clumped food supplies, and shell middens from intertidal harvesting and deforestation. Mangroves are important to local human populations as well as to hermit crabs, for a wide variety of (similar) reasons. Mangroves provide storm shelter, fisheries and fishery nursery grounds for adjacent human settlements, but they also harbour mosquito populations and their removal provides valuable building materials and fuel. Hermit crabs may be useful (indirectly) to coastal human populations by being a source of food to certain commercial species, and by quickly consuming rotting/discarded food and faeces (thereby reducing disease and pests). They can also cause minor problems to coastal human populations because they use shells of (fisheries) target mollusc species and can be more abundant than the living molluscs, thereby slowing down effective hand collection through confusion over identification. The mixture of positive and negative attributes that the three groups impart to each other in the Quirimba Archipelago, northern Mozambique, is discussed.  相似文献   

16.
Studies on the interaction between the hermit crab Pagurus longicarpus and its symbiotic hydroid Hydractinia symbiolongicarpus have focused on positive effects of hydroids on their host hermit crabs (e.g., protection from predators). Yet, these benefits may be balanced with reproductive costs, which are rarely studied. Results from field observations, laboratory trials, and a mesocosm experiment indicate that female hermit crabs in hydroid-colonized shells exhibit depressed ovigery, smaller clutch sizes, and increased clutch failure relative to females in bare shells. Frequent switching between bare and hydroid-colonized shells may alleviate negative effects when the density of hydroids in the environment is low, but at high densities Hydractinia may significantly impact hermit crab reproduction.  相似文献   

17.
Shell rotating behavior of the hermit crabPagurus geminus was investigated. In preliminary observations, hermit crabs motivated to change shells rotated presented shells, filled with sand, in a way that dislodged the inside material. In order to determine if this behavior is stereotyped, or flexible and dependent on shell type, hermit crabs were tested with ordinary dextral shells ofLatirulus nagasakiensis and sinistral shells ofAntiplanes contraria. Sinistral shells are not normally encountered by hermit crabs. Their rotation of the dextral shell to the left was adequate for sand discharge. Sinistral shells were rotated in both directions. Analysis of recorded videotapes showed that variation in rotation direction could be attributed to variation in the position of the crab relative to the shell. When the crab faced the shell aperture from the inner lip, it rotated the sinistral shell to the right, and to opposite direction when it faced from the outer lip side. The crab always pushed the upper side of the horizontally laid shell, regardless of shell type or its own position.  相似文献   

18.
The small-scale distribution and resource utilization patterns of hermit crabs living in symbiosis with sea anemones were investigated in the Aegean Sea. Four hermit crab species, occupying shells of nine gastropod species, were found in symbiosis with the sea anemone Calliactis parasitica. Shell resource utilization patterns varied among hermit crabs, with Dardanus species utilizing a wide variety of shells. The size structure of hermit crab populations also affected shell resource utilization, with small-sized individuals inhabiting a larger variety of shells. Sea anemone utilization patterns varied both among hermit crab species and among residence shells, with larger crabs and shells hosting an increased abundance and biomass of C. parasitica. The examined biometric relationships suggested that small-sized crabs carry, proportionally to their weight, heavier shells and increased anemone biomass than larger ones. Exceptions to the above patterns are related either to local resource availability or to other environmental factors.  相似文献   

19.
Modern hermit crabs form associations with many organisms which encrust, bore into, or cohabit the living chambers of gastropod shells occupied by the crabs. Among these hermit crab symbionts are bryozoan species which develop massive, commonly multilayered, colonies encrusting hermit crab shells. These colonies extend the living chamber of the crab through a characteristic process of helicospiral tubular growth originating from the shell aperture. The scant information available on the ecology of Recent bryozoan‐hermit crab symbioses is reviewed. Symbioses have been recorded from intertidal to upper slope environments, and from tropical to cold temperate zones. None of the hermit crab species are obligatory symbionts of bryozoans, and the majority of the modern bryozoan species involved are also not obligatory symbionts. Fossil examples always lack the hermit crabs, which have a poor fossilization potential; however, the distinctive tubular growth pattern and other features of the bryozoans enable recognition of ancient examples of the symbiosis. The earliest inferred associations between bryozoans and hermit crabs date from the Mid Jurassic, but associations remained uncommon until the Neogene. A remarkably wide taxonomic diversity of Recent and fossil bryozoans are known or inferred symbionts of hermit crabs. The broad evolutionary pattern of the association demonstrates multiple originations of the symbiosis by bryozoans belonging to at least 5 cyclostome and 12 cheilostome families. Only the Miocene‐Recent cheilostome family Hippoporidridae has an evolutionary history closely tied to symbiosis with hermit crabs. There is no evidence for coevolution.  相似文献   

20.

Many studies have investigated shell‐related behaviour in hermit crabs. Few studies, however, have focused specifically on the intraspecies aggression associated with shell competition. We examined intraspecies aggression in hermit crab (Pagurus samuelis) pairs as it relates to competition for a limiting resource, gastropod shells. Pairs of hermit crabs were observed in the laboratory in four different treatments that varied the presence or absence of shells for one or both of the crabs. Measurements of the latency to respond, the number of bouts, and the fight durations were recorded. There was a significant difference among treatments for all three measurements, and naked hermit crabs were much more aggressive than housed hermit crabs. There was no significant difference in aggression between males and females in any of the three treatments. The heightened aggression observed in naked P. samuelis is likely in service of acquiring a protective shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号