首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two distinct circularly permuted forms of chicken avidin were designed with the aim of constructing a fusion avidin containing two biotin-binding sites in one polypeptide. The old N and C termini of wild-type avidin were connected to each other via a glycine/serine-rich linker, and the new termini were introduced into two different loops. This enabled the creation of the desired fusion construct using a short linker peptide between the two different circularly permuted subunits. The circularly permuted avidins (circularly permuted avidin 5 --> 4 and circularly permuted avidin 6 --> 5) and their fusion, pseudotetrameric dual chain avidin, were biologically active, i.e. showed biotin binding, and also displayed structural characteristics similar to those of wild-type avidin. Dual chain avidin facilitates the development of dual affinity avidins by allowing adjustment of the ligand-binding properties in half of the binding sites independent of the other half. In addition, the subunit fusion strategy described in this study can be used, where applicable, to modify oligomeric proteins in general.  相似文献   

2.
To study the role of sequence and topology in RNA folding, we determined the kinetic folding pathways of two circularly permuted variants of the Tetrahymena group I ribozyme, using time-resolved hydroxyl radical footprinting. Circular permutation changes the distance between interacting residues in the primary sequence, without changing the native structure of the RNA. In the natural ribozyme, tertiary interactions in the P4-P6 domain form in 1 s, while interactions in the P3-P9 form in 1-3 min at 42 degrees C. Permutation of the 5' end to G111 in the P4 helix allowed the stable P4-P6 domain to fold in 200 ms at 30 degrees C, five times faster than in the wild-type RNA, while the other domains folded five times more slowly (5-8 min). By contrast, circular permutation of the 5' end to G303 in J8/7 decreased the folding rate of the P4-P6 domain. In this permuted RNA, regions joining P2, P3 and P4 were protected in 500 ms, while the P3-P9 domain was 60-80% folded within 30 s. RNase T(1) digestion and FMN photocleavage showed that circular permutation of the RNA sequence alters the initial ensemble of secondary structures, thereby changing the tertiary folding pathways. Our results show that the natural 5'-to-3' order of the structural domains in group I ribozymes optimizes structural communication between tertiary domains and promotes self-assembly of the catalytic center.  相似文献   

3.
Split inteins have been used as a versatile tool in protein engineering to mediate efficient in vivo and in vitro trans-splicing of a protein. The trans-splicing ability of split inteins was also applied to the in vivo cyclization of a protein. However, cyclization efficiency is dependent upon the type of split inteins employed and the conditions under which cyclization occur. In this study, a novel reporter system that easily measures the cyclization efficiency of split inteins was developed. For this purpose TEM-1 beta-lactamase was divided into two fragments (24 approximately 215 and 216 approximately 286 amino acids) and circularly permuted. The circularly permuted beta-lactamase expressed in Escherichia coli showed little beta-lactamase activity, most likely due to the structural modification of the protein. However, when the circularly permuted beta-lactamase was cyclized by the Synechocystis sp. PCC6803 DnaB split mini-intein, beta-lactamase activity both in vitro and in vivo was recovered. These results suggest that the novel reporter system can be exploited to develop new inteins with high efficiency of in vivo protein cyclization.  相似文献   

4.
A recently reported dual-chain avidin was modified further to contain two distinct, independent types of ligand-binding sites within a single polypeptide chain. Chicken avidin is normally a tetrameric glycoprotein that binds water-soluble d-biotin with extreme affinity (K(d) approximately 10(-15) M). Avidin is utilized in various applications and techniques in the life sciences and in the nanosciences. In a recent study, we described a novel avidin monomer-fusion chimera that joins two circularly permuted monomers into a single polypeptide chain. Two of these dual-chain avidins were observed to associate spontaneously to form a dimer equivalent to the wt tetramer. In the present study, we successfully used this scaffold to generate avidins in which the neighboring biotin-binding sites of dual-chain avidin exhibit two different affinities for biotin. In these novel avidins, one of the two binding sites in each polypeptide chain, the pseudodimer, is genetically modified to have lower binding affinity for biotin, whereas the remaining binding site still exhibits the high-affinity characteristic of the wt protein. The pseudotetramer (i.e., a dimer of dual-chain avidins) has two high and two lower affinity biotin-binding sites. The usefulness of these novel proteins was demonstrated by immobilizing dual-affinity avidin with its high-affinity sites. The sites with lower affinity were then used for affinity purification of a biotinylated enzyme. These "dual-affinity" avidin molecules open up wholly new possibilities in avidin-biotin technology, where they may have uses as novel bioseparation tools, carrier proteins, or nanoscale adapters.  相似文献   

5.

Background

Avidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences in the tandem gene have limited the use of dual-chain avidin in biotechnological applications.

Principal Findings

To overcome challenges associated with the original dual-chain avidin, we developed chimeric dual-chain avidin, which is a tandem fusion of avidin and avidin-related protein 4 (AVR4), another member of the chicken avidin gene family. We observed an increase in protein production and better thermal stability, compared with the original dual-chain avidin. Additionally, PCR amplification of the hybrid gene was more efficient, thus enabling more convenient and straightforward modification of the dual-chain avidin. When studied closer, the generated chimeric dual-chain avidin showed biphasic biotin dissociation.

Significance

The improved dual-chain avidin introduced here increases its potential for future applications. This molecule offers a valuable base for developing bi-functional avidin tools for bioseparation, carrier proteins, and nanoscale adapters. Additionally, this strategy could be helpful when generating hetero-oligomers from other oligomeric proteins with high structural similarity.  相似文献   

6.
The first and regulatory step of heme biosynthesis in mammals begins with the pyridoxal 5'-phosphate-dependent condensation reaction catalyzed by 5-aminolevulinate synthase. The enzyme functions as a homodimer with the two active sites at the dimer interface. Previous studies demonstrated that circular permutation of 5-aminolevulinate synthase does not prevent folding of the polypeptide chain into a structure amenable to binding of the pyridoxal 5'-phosphate cofactor and assembly of the two subunits into a functional enzyme. However, while maintaining a wild type-like three-dimensional structure, active, circularly permuted 5-aminolevulinate synthase variants possess different topologies. To assess whether the aminolevulinate synthase overall structure can be reached through alternative or multiple folding pathways, we investigated the guanidine hydrochloride-induced unfolding, conformational stability, and structure of active, circularly permuted variants in relation to those of the wild type enzyme using fluorescence, circular dichroism, activity, and size exclusion chromatography. Aminolevulinate synthase and circularly permuted variants folded reversibly; the equilibrium unfolding/refolding profiles were biphasic and, in all but one case, protein concentration-independent, indicating a unimolecular process with the presence of at least one stable intermediate. The formation of this intermediate was preceded by the disruption of the dimeric interface or dissociation of the dimer without significant change in the secondary structural content of the subunits. In contrast to the similar stabilities associated with the dimeric interface, the energy for the unfolding of the intermediate as well as the overall conformational stabilities varied among aminolevulinate synthase and variants. The unfolding of one functional permuted variant was protein concentration-dependent and had a potentially different folding mechanism. We propose that the order of the ALAS secondary structure elements does not determine the ability of the polypeptide chain to fold but does affect its folding mechanism.  相似文献   

7.
The high affinity biotin-binding proteins (BBPs) avidin and streptavidin are established insecticidal agents, effective against a range of insect pests. Earlier work showed that, when expressed in planta, full length avidin and a truncated form of streptavidin are highly insecticidal. More recently, a wide range of BBPs, found in diverse organisms or engineered for various biotechnological applications have been reported. However, their effectiveness as plant-based insecticides has not been established. Here we report in planta expression of three different genes, designed to produce BBP variant proteins in the vacuole. The first was mature full length chicken avidin, the second a circularly permuted dual chain chicken avidin, and the third was an avidin homologue, a native bradavidin from Bradyrhyzobium japonicum. All three proteins were expressed in Nicotiana tabacum (tobacco). The transgenic tobacco lines were healthy, phenotypically normal and, when subjected to bioassay, resistant to the important cosmopolitan pest, potato tuber moth (Phthorimaea operculella) larvae at concentrations of ~50 ppm.  相似文献   

8.
The betagamma-crystallins form a superfamily of eye lens proteins comprised of multiple Greek motifs that are symmetrically organized into domains and higher assemblies. In the betaB2-crystallin dimer each polypeptide folds into two similar domains that are related to monomeric gamma-crystallin by domain swapping. The crystal structure of the circularly permuted two-domain betaB2 polypeptide shows that permutation converts intermolecular domain pairing into intramolecular pairing. However, the dimeric permuted protein is, in fact, half a native tetramer. This result shows how the sequential order of domains in multi-domain proteins can affect quaternary domain assembly.  相似文献   

9.
A collection of circularly permuted catalytic chains of aspartate transcarbamoylase (ATCase) has been generated by random circular permutation of the pyrB gene. From the library of ATCases containing permuted polypeptide chains, we have chosen for further investigation nine ATCase variants whose catalytic chains have termini located within or close to an alpha helix. All of the variants fold and assemble into dodecameric holoenzymes with similar sedimentation coefficients and slightly reduced thermal stabilities. Those variants disrupted within three different helical regions in the wild-type structure show no detectable enzyme activity and no apparent binding of the bisubstrate analog N:-phosphonacetyl-L-aspartate. In contrast, two variants whose termini are just within or adjacent to other alpha helices are catalytically active and allosteric. As expected, helical disruptions are more destabilizing than loop disruptions. Nonetheless, some catalytic chains lacking continuity within helical regions can assemble into stable holoenzymes comprising six catalytic and six regulatory chains. For seven of the variants, continuity within the helices in the catalytic chains is important for enzyme activity but not necessary for proper folding, assembly, and stability of the holoenzyme.  相似文献   

10.
Human cystatin C, a powerful physiological protein inhibitor of cathepsins B, H and L, contains two disulphide bridges, at least one of which is essential to its inhibitory activity. The positions of these bridges in the single polypeptide chain of the protein have been determined by diagonal paper electrophoresis. The cysteine residues at positions 73 and 83 form one bridge, and those at positions 97 and 117 form the other. In the homologous cystatin of chicken egg-white, the disulphides are Cys 71–Cys 81, and Cys 95–Cys 115.  相似文献   

11.
All tetrameric hemoglobins from Antarctic fish, including that from Trematomus bernacchii, HbTb form in the ferric state, promptly and distinctively from all the other tetrameric hemoglobins, a mixture of aquo-met at the α subunits and bis-histidyl adduct (hemichrome) at the β subunits. The role of the tertiary and quaternary structure in the hemichrome formation is unknown. Here we report the cloning, expression, purification, spectroscopic and computational characterization of the β-chain of HbTb (β-HbTb). Similarly to the human β-chains, β-HbTb self-assembles to form the homotetramer β(4)-HbTb; however, the latter quantitatively forms reversible ferric and ferrous bis-histidyl adducts, which are only partially present in the human tetramer (β(4)-HbA). A molecular dynamics study of the isolated β subunit of the two Hbs indicates that the ability to form hemichrome is an intrinsic feature of the chain; moreover, the greater propensity of β-HbTb to form the bis-histidyl adduct is probably linked to the higher flexibility of the CD loop region. On the bases of these experimental and computational results on the isolated chain, the influence of the quaternary structure on the stability of the endogenous ferrous and ferric hexa-coordination is also discussed.  相似文献   

12.
Previous studies on Escherichia coli aspartate transcarbamoylase (ATCase) demonstrated that active, stable enzyme was formed in vivo from complementing polypeptides of the catalytic (c) chain encoded by gene fragments derived from the pyrBI operon. However, the enzyme lacked the allosteric properties characteristic of wild-type ATCase. In order to determine whether the loss of homotropic and heterotropic properties was attributable to the location of the interruption in the polypeptide chain rather than to the lack of continuity, we constructed a series of fragmented genes so that the breaks in the polypeptide chains would be dispersed in different domains and diverse regions of the structure. Also, analogous molecules containing circularly permuted c chains with altered termini were constructed for comparison with the ATCase molecules containing fragmented c chains. Studies were performed on four sets of ATCase molecules containing cleaved c chains at positions between residues 98 and 99, 121 and 122, 180 and 181, and 221 and 222; the corresponding circularly permuted chains had N termini at positions 99, 122, 181, and 222. All of the ATCase molecules containing fragmented or circularly permuted c chains exhibited the homotropic and heterotropic properties characteristic of the wild-type enzyme. Hill coefficients (n(H:)) and changes in them upon the addition of ATP and CTP were similar to those observed with wild-type ATCase. In addition, the conformational changes revealed by the decrease in sedimentation coefficient upon the addition of a bisubstrate analog were virtually identical to that for the wild-type enzyme. Differential scanning calorimetry showed that neither the breakage of the polypeptide chains nor the newly formed covalent bond between the termini in the wild-type enzyme had a significant impact on the thermal stability of the assembled dodecamers. The studies demonstrate that continuity of the polypeptide chain within structural domains is not essential for the assembly, activity, and allosteric properties of ATCase.  相似文献   

13.
Avidin, the basic biotin-binding glycoprotein from chicken egg white, is known to interact with DNA, whereas streptavidin, its neutral non-glycosylated bacterial analog, does not. In the present study we investigated the DNA-binding properties of avidin. Its affinity for DNA in the presence and absence of biotin was compared with that of other positively charged molecules, namely the protein lysozyme, the cationic polymers polylysine and polyarginine and an avidin derivative with higher isoelectric point (pI approximately 11) in which most of the lysine residues were converted to homoarginines. Gel-shift assays, transmission electron microscopy and dynamic light scattering experiments demonstrated an unexpectedly strong interaction between avidin and DNA. The most pronounced gel-shift retardation occurred with the avidin-biotin complex, followed by avidin alone and then guanidylated avidin. Furthermore, ultrastructural and light-scattering studies showed that avidin assembles on the DNA molecule in an organized manner. The assembly leads to the formation of nanoparticles that are about 50-100 nm in size (DNA approximately 5 kb) and have a rod-like or toroidal shape. In these particles the DNA is highly condensed and one avidin is bound to each 18 +/- 4 DNA base pairs. The complexes are very stable even at high dilution ([DNA] =10 pM) and are not disrupted in the presence of buffers or salt (up to 200 mM NaCl). The other positively charged molecules also condense DNA and form particles with a globular shape. However, in this case, these particles disassemble by dilution or in the presence of low salt concentration. The results indicate that the interaction of avidin with DNA may also occur under physiological conditions, further enhanced by the presence of biotin. This DNA-binding property of avidin may thus shed light on a potentially new physiological role for the protein in its natural environment.  相似文献   

14.
Q Wang  J M Calvo 《The EMBO journal》1993,12(6):2495-2501
Lrp (Leucine-responsive regulatory protein) is a global regulatory protein that controls the expression of many operons in Escherichia coli. One of those operons, ilvIH, contains six Lrp binding sites located within a several hundred base pair region upstream of the promoter region. Analysis of the binding of Lrp to a set of circularly permuted DNA fragments from this region indicates that Lrp induces DNA bending. The results of DNase I footprinting experiments suggest that Lrp binding to this region facilitates the formation of a higher-order nucleoprotein structure. To define more precisely the degree of bending associated with Lrp binding, one or two binding sites were separately cloned into a pBend vector and analyzed. Lrp induced a bend of approximately 52 degrees upon binding to a single binding site, and the angle of bending is increased to at least 135 degrees when Lrp binds to two adjacent sites. Lrp-induced DNA bending, and a natural sequence-directed bend that exists within ilvIH DNA, may be architectural elements that facilitate the assembly of a nucleoprotein complex.  相似文献   

15.
The biotin-binding tetrameric proteins, streptavidin from Streptomyces avidinii and chicken egg white avidin, are excellent models for the study of subunit-subunit interactions of a multimeric protein. Efforts are thus being made to prepare mutated forms of streptavidin and avidin, which would form monomers or dimers, in order to examine their effect on quaternary structure and assembly. In the present communication, we compared the crystal structures of binding site W-->K mutations in streptavidin and avidin. In solution, both mutant proteins are known to form dimers, but upon crystallization, both formed tetramers with the same parameters as the native proteins. All of the intersubunit bonds were conserved, except for the hydrophobic interaction between biotin and the tryptophan that was replaced by lysine. In the crystal structure, the binding site of the mutated apo-avidin contains 3 molecules of structured water instead of the 5 contained in the native protein. The lysine side chain extends in a direction opposite that of the native tryptophan, the void being partially filled by an adjacent lysine residue. Nevertheless, the binding-site conformation observed for the mutant tetramer is an artificial consequence of crystal packing that would not be maintained in the solution-phase dimer. It appears that the dimer-tetramer transition may be concentration dependent, and the interaction among subunits obeys the law of mass action.  相似文献   

16.
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistant with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.  相似文献   

17.
We investigated the relationship between RNA structure and folding rates accounting for hierarchical structural formation. Folding rates of two-state folding proteins correlate well with relative contact order, a quantitative measure of the number and sequence distance between tertiary contacts. These proteins do not form stable structures prior to the rate-limiting step. In contrast, most secondary structures are stably formed prior to the rate-limiting step in RNA folding. Accordingly, we introduce "reduced contact order", a metric that reflects only the number of residues available to participate in the conformational search after the formation of secondary structure. Plotting the folding rates and the reduced contact order from ten different RNAs suggests that RNA folding can be divided into two classes. To examine this division, folding rates of circularly permutated isomers are compared for two RNAs, one from each class. Folding rates vary by tenfold for circularly permuted Bacillus subtilis RNase P RNA isomers, whereas folding rates vary by only 1.2-fold for circularly permuted catalytic domains. This difference is likely related to the dissimilar natures of their rate-limiting steps.  相似文献   

18.
Human porphobilinogen synthase (PBGS) can exist in two dramatically different quaternary structure isoforms, which have been proposed to be in dynamic equilibrium. The quaternary structure isoforms of PBGS result from two alternative conformations of the monomer; one monomer structure assembles into a high activity octamer, whereas the other monomer structure assembles into a low activity hexamer. The kinetic behavior of these oligomers led to the hypothesis that turnover facilitates the interconversion of the oligomeric structures. The current work demonstrates that the interactions of ligands at the enzyme active site promote the structural interconversion between human PBGS quaternary structure isoforms, favoring formation of the octamer. This observation illustrates that the assembly and disassembly of oligomeric proteins can be facilitated by the protein motions that accompany enzymatic catalysis.  相似文献   

19.
Chen HN  Woycechowsky KJ 《Biochemistry》2012,51(23):4704-4712
Protein self-assembly relies upon the formation of stabilizing noncovalent interactions across subunit interfaces. Identifying the determinants of self-assembly is crucial for understanding structure-function relationships in symmetric protein complexes and for engineering responsive nanoscale architectures for applications in medicine and biotechnology. Lumazine synthases (LS's) comprise a protein family that forms diverse quaternary structures, including pentamers and 60-subunit dodecahedral capsids. To improve our understanding of the basis for this difference in assembly, we attempted to convert the capsid-forming LS from Aquifex aeolicus (AaLS) into pentamers through a small number of rationally designed amino acid substitutions. Our mutations targeted side chains at ionic (R40), hydrogen bonding (H41), and hydrophobic (L121 and I125) interaction sites along the interfaces between pentamers. We found that substitutions at two or three of these positions could reliably generate pentameric variants of AaLS. Biophysical characterization indicates that this quaternary structure change is not accompanied by substantial changes in secondary or tertiary structure. Interestingly, previous homology-based studies of the assembly determinants in LS's had identified only one of these four positions. The ability to control assembly state in protein capsids such as AaLS could aid efforts in the development of new systems for drug delivery, biocatalysis, or materials synthesis.  相似文献   

20.
The sequence of granulocyte colony-stimulating factor (G-CSF) has been circularly permuted by introducing new chain termini into interhelical loops and by constraining the N- and C-terminal helices, either by direct linkage of the termini (L0) or by substitution of the amino-terminal 10-residue segment with a seven-residue linker composed of glycines and serines (L1). All the circularly permuted G-CSFs (cpG-CSFs) were able to fold into biologically active structures that could recognize the G-CSF receptor. CD and NMR spectroscopy demonstrated that all of the cpG-CSFs adopted a fold similar to that of the native molecule, except for one [cpG-CSF(L1)[142/141]] which has the new termini at the end of loop 34 with the shorter L1 linker. All of the cpG-CSFs underwent cooperative unfolding by urea, and a systematically lower free energy change (DeltaGurea) was observed for molecules with the shorter L1 linker than for those molecules in which the original termini were directly linked (the L0 linker). The thermodynamic stability of the cpG-CSFs toward urea was found to correlate with their relative ability to stimulate proliferation of G-CSF responsive cells. Taken together, these results indicate that the G-CSF sequence is robust in its ability to undergo linear rearrangement and adopt a biologically active conformation. The choice of linker, with its effect on stability, seems to be important for realizing the full biological activity of the three-dimensional structure. The breakpoint and linker together are the ultimate determinants of the structural and biological profiles of these circularly permuted cytokines. In the following paper [McWherter, C. A., et al. (1999) Biochemistry 38, 4564-4571], McWherter and co-workers have used circularly permuted G-CSF sequences to engineer chimeric dual IL-3 and G-CSF receptor agonists in which the relative spatial orientation of the receptor agonist domains is varied. Interpreting the differences in activity for the chimeric molecules in terms of the connectivity between domains depends critically on the results reported here for the isolated cpG-CSF domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号