首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Eggs of Chelydra serpentina were incubated at 30°C and 26°C. In addition, incubation was done at 20°C during the temperature-sensitive period for sex determination. Incubation at 20°C and 30°C resulted in females; incubation at 26°C resulted in males in 99% of the cases. The average gonadal length was less in the males. The average length of the 20°C ovaries did not vary significantly from that of the 30°C ovaries. The condition of the oviducts was correlated with histology of the gonads in hatchlings and in 3-month-old animals. When at least one of the oviducts was obvious and intact, ovaries were present. If the oviducts were absent or interrupted, testes were present. Histological characteristics of the gonads resulting from the three incubation temperatures are described. In the 26°C testes, cellular infiltrations occurred frequently. The ovaries of 20°C hatchlings tended to have a less developed germinal epithelium than that of the 30°C animals. Also, epithelial cysts occurred frequently in the 20°C ovaries. The incidence of follicles at 3 months was not differential.  相似文献   

2.
Eggs of Pteronarcys californica Newport were incubated at fixed temperatures between 5 and 20°C in the laboratory and at field temperatures in the Crowsnest River, Alberta. The regression of rate of development on temperature between 5–15°C gave a developmental zero of 3.125°C. Within the range 10–20°C, highest hatching success and fewest days to median hatch occurred at 15.0 or 17.5°C, but physiological time (day-degrees) for egg hatching increased with temperature throughout, markedly so above 15°C. A minimum of 182 days was required for 50% hatch in the laboratory, with no observable development for approximately 80 days. Eggs placed in the river on 25 May 1993 started to hatch on 17 October 1993, and the pulse of larval recruitment in the field population occurred between April and August, 11 to 15 months after oviposition. Eggs hatched over periods of 130–322 days at different temperatures in the laboratory, and over an 11-month period in the field. The placement of diapause early in embryonic development is suggested as a cause of extended recruitment. The variety of embryonic development in Plecoptera is briefly reviewed.  相似文献   

3.
In decapod crustaceans, the conditions experienced during embryonic development trigger phenotypic plasticity of the larvae at hatching. The objective of this study was to test the effects of temperature during embryonic development of Palaemon serratus on the phenotypic plasticity of hatching larvae. We incubated egg-bearing females from eggs laying to hatching at four temperatures (10, 15, 18 and 20°C). Weight, carbon and nitrogen contents were measured on newly laid eggs and on freshly hatched larvae. The duration of embryonic development was negatively correlated with incubation temperature. At 20°C, all females abandoned their eggs during development. Incubation temperature had no effect on the weight and the percentage of N of the larvae at hatching, while it did affect their percentage of C and their C/N ratio. Embryos incubated at 10°C seemed to produce larvae with fewer lipid reserves than those incubated at 15 and 18°C. They probably overconsumed their lipid reserves to compensate for the metabolic losses due to the low temperature. These results provide information on the link between maternal investment per egg and larval development in P. serratus.  相似文献   

4.
Abstract

This study evaluated the effect of temperature on morphometric features of the egg during the embryonic development of the prawn Macrobrachium americanum and the relationship with hatching and the survival of the larvae. Berried females were grouped (n = 3) and reared at three different temperatures, 26, 29, and 33 °C, for which seven developmental stages were recognized. At each stage, the apical and sagittal diameters of the eggs were measured, the volume was calculated, and the weights were recorded. Additionally, the duration of embryonic development, hatching percentage, and larval survival were determined. At 29 and 33 °C, the eggs’ volume increased by 50%, but at 26 °C, the increase was 25%. Larvae from eggs incubated at 33 °C died one day after hatching. At 29 °C, larvae survived until Zoea VII. Larvae from eggs incubated at 26 °C died at the end of Zoea I. The number of days of embryonic development was 20.5 ± 1.5 (26 °C), 15 ± 1 (29 °C), and 12 ± 1 (33 °C). A temperature of 29 °C was the most favorable for embryonic development in M. americanum.  相似文献   

5.
Eggs were stripped from gravid Atlantic silversides collected on two occasions, once during the early part and once during the late part of the natural spawning season. Unfertilized egg diameter was not correlated with length of the female, nor was it significantly larger during the early part of the season. Eggs were fertilized and incubated in the laboratory. Larval length at hatch was measured every 24 h during the hatching period after embryos were incubated at 18 or 25° C. Lower incubation temperature caused a significantly greater length at hatch for the offspring of each of the 20 females studies. In most cases (17 out of 20 at 25° C, 10 out of 20 at 18° C), there was a significant decrease in length at hatch during the hatching period for a given female's eggs incubated at a given temperature. In the natural environment, larvae hatched early in the season under cooler temperatures could average 12% longer than those hatched later under warmer temperatures, and therefore may have a greater chance of survival. The results help to explain the observation that field-caught M. menidia that hatched early in the season are larger at any given age than those that hatched late in the season.  相似文献   

6.
A series of stages in the embryonic development of Chelydra serpentina   总被引:8,自引:0,他引:8  
Eggs of the common snapping turtle, Chelydra serpentina serpentina were incubated at 30°C and at 20°C. The incubation period at the higher temperature was about 63 days. At the lower temperature, the period was estimated to be 140 days. Lengths of the embryos at various times of development were recorded. A series of 26 stages is described. The staging is based on timed intervals at a constant temperature, 20°C.  相似文献   

7.
Delayed egg hatching can influence the survival of aquatic insects by reducing exposure to competitors, predators, parasites, or unfavorable environmental conditions. We examined egg development in a Colorado population of the stonefly, Megarcys signata (Plecoptera: Perlodidae), whose larvae inhabit high altitude streams in the Rocky Mountains of western North America. Five-thousand fertilized eggs were collected from 40 different females and incubated in the East River, Gunnison County, Colorado, until late fall, at which time unhatched eggs were transported to incubation chambers in Ithaca, New York. We used three different combinations of photoperiod and temperature (10L:14D, 4°C; 10L:14D, 8°C; 8L:16D, 8°C) in an attempt to induce hatching. Eggs in the treatments with temperatures elevated above normal winter temperatures in the East River (8°C) began developing after 6 months, whereas eggs in the treatment most closely simulating natural stream conditions (4°C) did not hatch after 10 months of incubation. Our data indicate that this population of Megarcys signata has an extended egg stage that persists for almost a year, and that it is semivoltine at these elevations of 2885 and 2895 meters.  相似文献   

8.
Anthocoris minki Dohrn is a promising indigenous Anthocoris species for the biological control of Agonoscena pistaciae Burck. and Laut. (Homoptera: Psyllidae) in pistachio orchards in Turkey. The adult longevity, fecundity, life table parameters and prey consumption of A. minki fed on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs were studied at combinations of three constant temperatures (20, 25 and 30 ± 1°C) with two relative humidity (RH) levels (40 and 65 ± 5%). Studies indicated that temperature and RH significantly affected adult longevity, fecundity and prey consumption of A. minki. The greatest adult female longevity was 116.0 days at 20°C and 65% RH; the shortest adult female longevity was 27.5 days at 30°C and 40% RH. At all tested temperatures, the oviposition period and prey consumption of both females and males significantly decreased at low RH compared to high RH. The highest and lowest total fecundities were 276.0 eggs (at 20°C and 65% RH) and 42.4 eggs (at 25°C and 40% RH), respectively. The intrinsic rates of natural increase (r m) at 40 and 65% RH were 0.049 and 0.076 at 20°C, 0.072 and 0.096 at 25°C and 0.076 and 0.112 at 30°C, respectively. The highest mean numbers of E. kuehniella eggs consumed by females and males were 859.6 (at 20°C) and 515.3 (at 25°C) at 65% RH, respectively; the lowest were 183.3 (at 20°C) and 95.5 (at 25°C) at 40% RH, respectively.  相似文献   

9.
Eggs of two small Australian lizards, Lampropholis guichenoti and Bassiana duperreyi, were incubated to hatching at 25 °C and 30 °C. Incubation periods were significantly longer at 25 °C in both species, and temperature had a greater effect on the incubation period of B. duperreyi (41.0 days at 25 °C; 23.1 days at 30 °C) than L. guichenoti (40.1 days at 25 °C; 27.7 days at 30 °C). Patterns of oxygen consumption were similar in both species at both temperatures, being sigmoidal in shape with a fall in the rate of oxygen consumption just prior to hatching. The higher incubation temperature resulted in higher peak and higher pre-hatch rates of oxygen consumption in both species. Total amount of oxygen consumed during incubation was independent of temperature in B. duperreyi, in which approximately 50 ml oxygen was consumed at both temperatures, but eggs of L. guichenoti incubated at 30 °C consumed significantly more (32.6 ml) than eggs incubated at 25 °C (28.5 ml). Hatchling mass was unaffected by either incubation temperature or the amount of water absorbed by eggs during incubation in both species. The energetic production cost of hatchling B. duperreyi (3.52 kJ · g−1) was independent of incubation temperature, whereas in L. guichenoti the production cost was greater at 30 °C (4.00 kJ · g−1) than at 25 °C (3.47 kJ · g−1). Snout-vent lengths and mass of hatchlings were unaffected by incubation temperature in both species, but hatchling B. duperreyi incubated at 30 °C had longer tails (29.3 mm) than those from eggs incubated at 25 °C (26.2 mm). These results indicate that incubation temperature can affect the quality of hatchling lizards in terms of embryonic energy consumption and hatchling morphology. Accepted: 27 January 2000  相似文献   

10.
Summary The auditory thresholds of three frogs-two subspecies of the genusHyla (H. a. arborea, H. a. savignyi) and one of the genusRana (R. r. ridibunda)—were measured at 5°, 12°, 20° and 28°C, by recording multi-unit activity from the torus semicircularis. In the tree frogs, the upper limit of the audible range is 7,000 Hz. At 5°C the best frequency is 3,000 Hz; the threshold (expressed in dB SPL in all cases) at this frequency is 49 dB (males) and 43 dB (females) forH. a. arborea and 42 dB (males) and 48 dB (females) forH. a. savignyi. At 12°C the thresholds are lower, and they are lower still at 20°, reaching a minimum, at 3,000 Hz, of 42 dB (males) and 38 dB (females) forH. a. arborea and 41 dB (males) and 40 dB (females) forH. a. savignyi. At frequencies of 1,000 Hz and lower, thresholds are high at 5°C; in part of this range they are considerably lowered at 20°C, whereas at 28°C there is a reduction in sensitivity to most frequencies inH. a. arborea, amounting to more than 10 dB in the males.H. a. savignyi differs in this regard; at 28° sensitivity is no less than at lower temperatures, and in fact is greater in the range 1,000–1,400 Hz. The audible range ofR. r. ridibunda is more restricted than that of the tree frogs, but it is more sensitive within this range. The highest frequency is 4,500 Hz. At 5°C the thresholds of the males are lowest at 500–600 Hz (42 dB) and 1,400–1,900 Hz (ca. 39 dB). The best frequencies of the females are 700 Hz (38 dB) and 1,400 Hz (36 dB). At 12°C the thresholds at 300 Hz and 1,000 Hz are markedly lowered, by 10–18 dB. The thresholds of the females at 20°C are still lower over almost the entire audible range, whereas in the males only part of the range is affected. This difference persists at 28°C, the threshold curve of the males being slightly raised, while that of the females is unchanged. Latencies are dependent upon temperature and sound pressure. With a rise in temperature from 5° to 20°C the latency falls by ca. 8 ms. An increase in sound pressure from 5 dB to 30 dB SPL shortens the latency by ca. 10 ms. These changes were found in all the frogs studied.  相似文献   

11.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

12.
The life table of the indigenous Neoseiulus californicus was studied at different temperatures and 65 ± 5% relative humidity under conditions of 16 h light : 8 h dark (LD 16:8). The total developmental period from egg to adult varied from 3.0 to 14.0 days at 15 to 35°C. Survival to adulthood ranges from 86.21 to 93.94%, with the highest rate at 25°C. The lower threshold temperature from egg to adult stages of females and males was 10.84 and 10.72°C, respectively, and the thermal constant was 57.14 degree‐days (DD) for females and 56.18 DD for males. Total number of eggs laid by each female was the highest (70.38 eggs) at 25°C, whereas average daily fecundity was the highest (3.69 eggs/female/day) at 30°C. The net reproductive rate was the highest (48.49) at 25°C and lowest (26.18) at 30°C. Mean generation time decreased from 19.04 to 11.47 days with increasing temperature from 20 to 30°C. Both intrinsic rate of natural increase (0.284) and finite rate of increase (1.32) were maximum at 30°C. Adult longevity was the highest (42.75 days for females and 32.60 days for males) at 20°C and lowest (22.70 days for females and 15.30 days for males) at 30°C. Sex ratio was female biased and was the highest (78.08) at 25°C and lowest (70.24) at 30°C. Developmental data of five constant temperatures, temperature thresholds and thermal requirements may be used to predict the occurrence, number of generations and population dynamics of N. californicus as an important biocontrol agent of Tetranychus urticae.  相似文献   

13.
Synopsis Attempts to culture lake sturgeon, Acipenser fulvescens, in the past have generally met with limited success. The Wisconsin Department of Natural Resources has been experimenting with artificial propagation of this species since 1979. The intent has been to develop egg collection and handling techniques, hatching regimes, larva and juvenile diet formulations, and to evaluate juvenile survival after stocking. Eggs were collected by caesarian section and fertilized with milt from ripe males taken during annual sturgeon spawning runs on the Fox and Wolf rivers in central Wisconsin. After insemination, the eggs were treated in a saturated solution of Bentonite clay and transported to the hatchery. Eggs were incubated at temperatures ranging from 13–16° C and embryos began hatching within 4 to 8 days. Hatching success ranged from 42 to 96%. Yolksac absorption was complete within 10 days of hatching. Larvae then became positively phototactic and swam actively as if searching for food. Successful larval diets consisted of live brine shrimp nauplii followed by larger zooplankton, primarily Daphnia sp. Juveniles grew best on diets of live Tubifex sp. and chopped earthworms. Liver, fish mash (ground up trout) and pelleted dry food were poorly accepted. Hatchery reared sturgeon grew more slowly than did wild fish.  相似文献   

14.
Eggs of Coregonus albula were incubated at constant temperatures: 1.1, 2.0, 2.9, 4.9, 6.6, 8.4, and 9.9 °C, and the percentage of normal hatch was 20.6, 11.8, 30.4, 61.0, 51.7, 32.6, and 14.6%, respectively. The lower and upper median tolerance limit (TL 50) defined as the interpolated temperature at which embryos survival to hatch was 50% of the highest response (61% at 4.9 °C) were 2.9 and 8.5 °C, respectively. The optimum temperature range delimited by lower and upper TL 75 was encompassed by 4.0 and 7.2 °C.Eggs of C. albula incubated at variable temperature in a commercial hatchery showed a very high survival (up to 76%). Similarly low survival observed during hatching of embryos at constant temperatures of 1.1 and 2.0 °C could be hightened (to about 90%) by raising the temperature in the beginning of hatching period. This phenomenon was utilized in the technique of delaying C. albula embryos' mass hatching for the purpose of synchronization in time of stocking the lakes with the time of appearence of good thermal and food conditions for C. albula larvae.The conception of the optimal thermal conditions for Coregoninae embryogenesis was developed as the course of incubation temperature, securing the highest survival rate during embryogenesis and also during the larval period.  相似文献   

15.
Egg maturation in Calliphora vicina is known to occur within a wide range of temperatures, from 12°C to nearly 30°C (Vinogradova, 1991). Photoperiodism has no effect on this process. Some females enter diapause already at 20°C; their fraction increases at lower temperatures and reaches 100% at 6°C. Reproducing females with eggs can survive for a long time and even lay eggs at low temperatures (4–5°C). Experiments with C. vicina from Leningrad Province revealed some effects of the diet (liver or fish) and temperature on the fly reproduction. At 20 and 25°C, 7–10-day old females begin to oviposit, but at 20°C egg maturation is observed in 98% of females feeding on liver and in only 5% of females feeding on fish. On the liver diet, the mean daily fecundity is significantly correlated with the day of oviposition but not with the temperature. At 20°C a significant correlation is observed between the mean daily fecundity and both the day of oviposition and food. The total number of eggs laid by flies after feeding on fish is half that produced after feeding on liver. The optimal conditions for Calliphora vicina cultivation are a 16-h light day, temperatures within the range from 20 to 25°C, and liver as food.  相似文献   

16.
SUMMARY. Embryonic durations and post embryonic growth rates of Caridina nilotica were determined under laboratory conditions at constant temperatures near 18, 24 and 30°C. Embryonic durations and intermoult intervals were negative curvilinear functions of temperature. At a given temperature moulting frequency varied inversely with shrimp size and slight sexual differences were apparent. Moulting frequency of berried females was governed by the temperature-specific embryonic durations. Growth rates were determined from changes in carapace length (CL) of individual shrimps (laboratory) or batches of shrimps (field enclosures) over 1 month and these data were used to calculate temperature-specific life-long growth curves for males and females. Growth in body mass was estimated indirectly from the carapace length-mass relationship of C. nilotica. On average, males grew marginally faster than females during the first 2 months of life, but growth of males larger than CL= 4 mm was considerably depressed relative to that of females. Inflexions in growth rate, apparently related to the onset of sexual maturity, were apparent in both sexes. Under laboratory conditions, the growth rate of males increased with temperature, but temperature-related differences were not as marked in females. Notwithstanding the more rapid moulting rate at 30°C the growth rate of females was slightly slower at 30 than at 24°C as a result of marginally but significantly smaller per moult growth increments observed at 30°C in animals up to CL= 5.5 mm. Possible reasons for this depressed growth are discussed. Growth rates of animals in field enclosures in Lake Sibaya over 1 month in winter (20 ± 3°C) were generally comparable to those estimated for the 18°C laboratory experiments. Growth rates in enclosures containing tripled standing stocks were almost identical to those containing the naturally occurring biomass of animals, suggesting a non-limited environment at least during the time of the experiment.  相似文献   

17.
To assess differences in temperature sensitivity during development, life tables for two lines derived from the species Trichogramma oleae Voegelé and Pointel and a strain of Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae) were elaborated at 15, 20, 25, 30, 35, 36, and 37°C in the laboratory. Eggs of Ephestia kuehniella Zeller together with a fresh drop of honey were supplied every 2 days until the death of the test females, and the removed host egg batches were placed in the equivalent rearing cabinet. The line ‘2F’ of T. oleae was found to be the most efficient at any range of temperatures except at 20 and 37°C, in comparison to the other tested strains. For all species, no progeny emerged from eggs incubated at 36°C and none of the parasitized eggs turned black at 37°C. The better performance at a broader range of temperatures by T. oleae (line 2 F) might be caused by a shorter history in artificial rearing in comparison to the other strains. Fewer generations at laboratory conditions and frequent multiplication on eggs of its natural host (the olive moth Prays oleae) may have prevented a deterioration in the rearing population of this strain, maintaining its genetic diversity at a higher scale. Applying varying temperature regimes on the rearing stock at regular intervals during the mass production process may help to maintain the essential quality of the biological control agents for field performance at higher temperatures.  相似文献   

18.
The development of Puccinia hordei on barley cv. Zephyr   总被引:2,自引:0,他引:2  
Germination of uredospores of Puccinia hordei was similar on cover-slips and on the first leaves of barley seedlings (cv. Zephyr) at 100 % r.h. over the range 5–25 °C, being greatest at 20 °C. At 15, 20 and 25 °C maximum germination was attained in 6 h. No uredospores germinated on coverslips in humidities below saturation. The numbers of pustules which subsequently developed on plants incubated at 5, 10, 15 or 18 °C and 100 % r.h. for varying periods up to 24 h, were directly related to rise in temperature and length of incubation. The time from inoculation to eruption of pustules (generation time) was 6 days at 25 °C, 8 days at 20 °C, 10 days at 15 °C, 15 days at 10 °C and 60 days at 5 °C. Pustule production on inoculated plants which had been kept at 5 °C was rapidly accelerated when they were transferred to 20 °C. Data obtained at constant temperatures were used to predict generation times of the fungus in the field. The productivity of pustules, determined as weight of uredospores, was examined at 10, 15 and 20 °C. Significantly more spores were produced at 15 than at 10 °C and most were produced at 20 °C. The results are discussed in relation to those obtained by other workers and to the development of brown rust in the field.  相似文献   

19.
Pilophorus gallicus Remane (Hemiptera: Miridae) is a predatory mirid reported in deciduous trees in the western Mediterranean area. This work aimed to determine the biological and demographic parameters for this species at different temperatures (15, 20, 25 and 30°C). Egg hatching times shortened from 57.8 days at 15°C to 9.2 days at 30°C, and nymphal development times declined from 62.8 days at 15°C to 11.1 days at 30°C. The hatching and nymphal survival rates were low at 15 and 30°C. The lower thermal thresholds for the egg and nymphal development were 12.4 and 12.0°C, respectively. These high thermal thresholds could be a safety mechanism to avoid the emergence of nymphs in the unfavorable winter period. Female weight increased between 15 and 25°C and decreased at 30°C. The fecundity increased from 70.2 eggs per female at 15°C to 212.4 eggs per female at 25°C, and decreased to 88.5 eggs per female at 30°C. Fertility ranged from 9.4% at 15°C to 40.9% at 25°C, being 24.9% at 30°C. The intrinsic rate of natural increase (rm) rose from 0.001 to 0.081 between 15 and 25°C and decreased to 0.05 at 30°C. In summary, this species performs poorly at low temperatures and has a relative tolerance of high temperatures (30°C); its performance was best at 25°C. Knowledge of the variation in the biological parameters with temperature may be very useful for the understanding of its ecology and population dynamics.  相似文献   

20.
SYNOPSIS. Sporogony of oocysts of Isospora rivolta from the dog was studied by observation of individual oocysts in hanging drop preparations. Oocysts were passed with the feces in the unsporulated sporont stage. Division of the sporont gave rise to 2 spherical sporoblasts. Each sporoblast elongated and developed into a transient double pyramid stage. This stage changed into the sporocyst, which then differentiated into the sporulated oocyst. Sporulation time was determined for 4 temperatures. At 20 C, 100% of the sporulating oocysts (Sz 100) had formed sporozoites by 48 hr. At 25 C, Sz 100 was 24 hr, at 30 C it was 16 hr, and at 38 C 8 hr. The percentages of sporulation at 20, 25, 30, and 38 C were 94, 97, 96, and 93, respectively. Oocysts incubated at 50 C for 4 hr did not develop or survive, since they failed to sporulate when reincubated at 30 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号