首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
流式细胞术   总被引:6,自引:0,他引:6  
流式细胞术是一种综合应用光学、机械学、流体力学、电子计算机、细胞生物学、分子免疫学等学科技术,对高速流动的细胞或亚细胞进行快速定量测定和分析的方法。它一秒钟能分析几千个细胞,并同时测定细胞的多个参数,广泛应用于生物医学的许多领域,如测定细胞的特征(形态、膜电位等)和细胞内pH,细胞DNA、蛋白质含量、表面受体、Ca2+等。对生物工程学来说,了解细胞的这些参数尤为重要,因为它们能比用传统技术测得的数据更好地描述细胞群体。从流式细胞仪对细胞多种参数的测定及原理,到它在生物工程学中的应用等方面进行了介绍,并讨论了流式细胞术的局限性和面临的挑战。  相似文献   

2.
Analysis of protein distribution in budding yeast   总被引:1,自引:0,他引:1  
Flow cytometry is a fast and sensitive method that allows monitoring of different cellular parameters on large samples of a population. Protein distributons give relevant information on growth dynamics, since they are related to the age distribution and depend on the law of growth of the population and the law of protein accumulation during the cell cycle. We analyzed protein distributions to evaluate alternative growth models for the budding yeast Saccharomyces cerevisiae and to monitor the changes in population dynamics that result from environmental modifications; such an analysis could potentially give parameters useful in the control of biotechnological processes. Theoretical protein distributions (taking into account the unequal division of yeast cells and the exponential law of protein accumulation during a cell cycle) quantitatively fit experimental distributions, once appropriate variability sources are introduced. Best fits are obtained when the protein threshold required for bud emergence increases at each new generation of parent cells.  相似文献   

3.
Flow cytometry enables comparative quantification, population analysis, and high-throughput screening of agonist-mediated G-protein-coupled receptor (GPCR) signaling in genetically engineered yeasts. By using flow cytometry, we found that transformation of yeast cells with a low plasmid number is critical both for the construction of large screening libraries and for stable signal transmission in cell ensembles. Based on these findings, we constructed an engineered yeast strain for the improved identification of signal promotion by Gα(i)-specific human GPCRs using flow cytometry.  相似文献   

4.
Flow cytometry is an automated, laser- or impedance-based, high throughput method that allows very rapid analysis of multiple chemical and physical characteristics of single cells within a cell population. It is an extremely powerful technology that has been used for over four decades with filamentous fungi. Although single cells within a cell population are normally analysed rapidly on a cell-by-cell basis using the technique, flow cytometry can also be used to analyse cell (e.g. spore) aggregates or entire microcolonies. Living or fixed cells can be stained with a wide range of fluorescent reporters to label different cell components or measure different physiological processes. Flow cytometry is also suited for measurements of cell size, interaction, aggregation or shape using non-labelled cells by means of analysing their light scattering characteristics. Fluorescence-activated cell sorting (FACS) is a specialized form of flow cytometry that provides a method for sorting a heterogeneous mixture of cells into two or more containers based upon the fluorescence and/or light scattering properties of each cell. The major advantage of analysing cells by flow cytometry over microscopy is the speed of analysis: thousands of cells can be analysed per second or sorted in minutes. Drawbacks of flow cytometry are that specific cells cannot be followed in time and normally spatial information relating to individual cells is lacking. A big advantage over microscopy is when using FACS, cells with desired characteristics can be sorted for downstream experimentation (e.g. for growth, infection, enzyme production, gene expression assays or ‘omics’ approaches). In this review, we explain the basic concepts of flow cytometry and FACS, define its advantages and disadvantages in comparison with microscopy, and describe the wide range of applications in which these powerful technologies have been used with filamentous fungi.  相似文献   

5.
Wilson L  Fathke C  Isik F 《BioTechniques》2002,32(3):548-551
Injury induces a flux in the cellular composition of tissues as part of the wound healing response. There is no reliable and rapid method to quantify and characterize the cellular composition of the matrix-rich wound. Our aim was to develop a rapid method to quantify the cellular composition in wounds by tissue dispersion and flow cytometry. Age- and weight-matched mice were wounded on the dorsum using a 1.5 x 1.5 cm2 template, and the wounds were excised at predetermined time points. Tissues were dispersed into single-cell suspensions and labeled with antibodies to cell surfaces and intracellular antigens. Flow cytometry was performed to quantify the percentage of each cell population and cell death. We found that our tissue dispersion protocol resulted in low cell death (4%-6%) and very high yield (80-220 x 10(6) cells/g). Furthermore, cell surfaces and intracellular antigens were preserved to provide accurate identification of the different cell populations. With the appropriate modifications, this protocol is likely to be applicable for the viable retrieval and identification of cells from skin and other collagen-dense tissues.  相似文献   

6.
The article reviews applications of flow cytometry sorting in manufacturing of pharmaceuticals. Flow cytometry sorting is an extremely powerful tool for monitoring, screening and separating single cells based on any property that can be measured by flow cytometry. Different applications of flow cytometry sorting are classified into groups and discussed in separate sections as follows: (a) isolation of cell types, (b) high throughput screening, (c) cell surface display, (d) droplet fluorescent-activated cell sorting (FACS). Future opportunities are identified including: (a) sorting of particular fractions of the cell population based on a property of interest for generating inoculum that will result in improved outcomes of cell cultures and (b) the use of population balance models in combination with FACS to design and optimize cell cultures.  相似文献   

7.
FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY   总被引:1,自引:0,他引:1  
Flow cytometers measure light scattering and fluorescence characteristics from individual particles in a fluid stream as they cross one or more light beams at rates of up to thousands of events per second. Flow cytometrically detectable optical signals may arise naturally from algae, reflecting cell size, structure, and endogenous pigmentation, or may be generated by fluorescent stains that report the presence of otherwise undetected cellular constituents. Some flow cytometers can physically sort particles with desired optical characteristics out of the flow stream and collect them for subsequent culture or other analyses. The statistically rigorous, cell‐level perspective provided by flow cytometry has been advantageous in experimental investigations of phycological problems, such as the regulation of cell cycle progression. The capacity of flow cytometry to measure large numbers of cells in large numbers of samples rapidly and quantitatively has been used extensively by biological oceanographers to define the distributions and dynamics of marine picophytoplankton. Recent work has shown that flow cytometry can be used to elucidate relationships between the optical properties of individual cells and the bulk optical properties of the water they live in, and thereby may provide an explicit link between algal physiology and global biogeochemistry. Unfortunately, commercially available flow cytometers that are optimized for biomedical applications have a limited capacity to analyze larger phytoplankton. To circumvent these limitations, many investigators are developing flow cytometers specifically designed for analyzing the broad range of sizes, shapes, and pigments found among algae. These new instruments can perform some novel measurements, including simple fluorescence excitation spectra, detailed angular scattering measurements, and in‐flow digital imaging. The growing accessibility and power of flow cytometers may allow the technology to be applied to a wider array of problems in phycology, including investigations of nonplanktonic and multicellular algae, but also presents new challenges for effectively analyzing the large quantity of multiparameter data produced. Ultimately, the detection of molecular probes by flow cytometry may allow single‐cell taxonomic and physiological information to be garnered for a variety of algae, both in culture and in nature.  相似文献   

8.
Mesenchymal stem cell (MSC)-based therapies have been proposed as novel treatments for intervertebral disc (IVD) degeneration. We have previously demonstrated that when MSCs are co-cultured with nucleus pulposus (NP) cells with direct cell-cell contact, they differentiate along the NP lineage and simultaneously stimulate the degenerate NP cell population to regain a normal (non-degenerate) phenotype, an effect which requires cell-cell communication. However, the mechanisms by which NP cells and MSCs interact in this system are currently unclear. Thus, in this study we investigated a range of potential mechanisms for exchange of cellular components or information that may direct these changes, including cell fusion, gap-junctional communication and exchange of membrane components by direct transfer or via microvesicle formation. Flow cytometry of fluorescently labeled MSCs and NP cells revealed evidence of some cell fusion and formation of gapjunctions, although at the three timepoints studied these phenomena were detectable only in a small proportion of cells. While these mechanisms may play a role in cell-cell communication, the data suggests they are not the predominant mechanism of interaction. However, flow cytometry of fluorescently dual-labeled cells showed that extensive bi-directional transfer of membrane components is operational during direct co-culture of MSCs and NP cells. Furthermore, there was also evidence for secretion and internalization of membrane-bound microvesicles by both cell types. Thus, this study highlights bi-directional intercellular transfer of membrane components as a possible mechanism of cellular communication between MSC and NP cells.  相似文献   

9.
陈林  宋丽 《生物工程学报》2023,39(2):472-487
流式细胞术是通过对液流中各种荧光标记的颗粒进行多参数快速高效的定性或定量测定的方法,在科学研究的多个领域发挥重要作用。然而,由于植物组织及细胞壁和次生代谢产物等细胞的特殊成分和结构,限制了其在植物研究领域的应用。本文在介绍流式细胞仪发展和组成分类的基础上,着重讨论了流式细胞术在植物领域的应用、研究进展及应用限制,进而展望该研究领域的发展趋势,为拓宽植物流式细胞术的潜在应用范围提供新的思考方向。  相似文献   

10.
Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth.  相似文献   

11.
Flow cytometry was used to estimate the proportions of different blood cell types in brown and rainbow trout. On the basis of forward light scatter and 90° side scatter three populations were differentiated. The relative abundance of these cells correlated with that of erythrocytc (r2= 0.994), lymphocyte plus thrombocyte(r2= 0.676) and neutrophil populations (r2= 0.571) enumerated by direct microscopy. By density gradient separation of cells, cell sorting and acridine orange staining it was confirmed that these cell types could be assigned to the populations detected. Changes in blood cell populations were monitored by flow cytometry in a group of experimental fish placed under confinement stress. Flow cytometry proved to be a rapid and reliable method for monitoring cell population dynamics in fish blood.  相似文献   

12.
Flow cytometry offers numerous advantages over traditional techniques for measuring intracellular Ca(2+) in lymphoid and nonlymphoid cells. In particular, the heterogeneity of cell responses can be defined by flow cytometry, and multiparameter analyses permit the determination of intracellular Ca(2+) in surface-marker-defined target cells as well as correlation of changes in Ca(2+) with other biochemical markers, including ligand binding. This article presents several established methods for measuring intracellular Ca(2+) by flow cytometry in lymphoid and nonlymphoid cells. Examples are provided for determination of Ca(2+) in human peripheral blood leukocytes and two human epithelial cell lines grown in monolayer. In addition, applications are reviewed or presented for correlating changes in intracellular Ca(2+) with other cell parameters, including cell cycle analysis, changes in cell membrane integrity, and the induction of apoptosis markers. Finally, a number of novel sample handling capabilities useful for performing kinetic analyses of Ca(2+) changes by flow cytometry are now available and one application is presented which is finding utility in pharmacologic studies.  相似文献   

13.
H M Davey  A Jones  A D Shaw  D B Kell 《Cytometry》1999,35(2):162-168
BACKGROUND: When exploited fully, flow cytometry can be used to provide multiparametric data for each cell in the sample of interest. While this makes flow cytometry a powerful technique for discriminating between different cell types, the data can be difficult to interpret. Traditionally, dual-parameter plots are used to visualize flow cytometric data, and for a data set consisting of seven parameters, one should examine 21 of these plots. A more efficient method is to reduce the dimensionality of the data (e.g., using unsupervised methods such as principal components analysis) so that fewer graphs need to be examined, or to use supervised multivariate data analysis methods to give a prediction of the identity of the analyzed particles. MATERIALS AND METHODS: We collected multiparametric data sets for microbiological samples stained with six cocktails of fluorescent stains. Multivariate data analysis methods were explored as a means of microbial detection and identification. RESULTS: We show that while all cocktails and all methods gave good accuracy of predictions (>94%), careful selection of both the stains and the analysis method could improve this figure (to > 99% accuracy), even in a data set that was not used in the formation of the supervised multivariate calibration model. CONCLUSIONS: Flow cytometry provides a rapid method of obtaining multiparametric data for distinguishing between microorganisms. Multivariate data analysis methods have an important role to play in extracting the information from the data obtained. Artificial neural networks proved to be the most suitable method of data analysis.  相似文献   

14.
Flow cytometry has been used to accurately monitor cell events that indicate the spatio-temporal state of a bioreactor culture. The introduction of process analytical technology (PAT) has led to process improvements using real-time or semi real-time monitoring systems. Integration of flow cytometry into an automated scheme for improved process monitoring can benefit PAT in bioreactor-based biopharmaceutical productions by establishing optimum process conditions and better quality protocols. Herein, we provide detailed protocols for establishing an automated flow cytometry system that can be used to investigate and monitor cell growth, viability, cell size, and cell cycle data. A method is described for the use of such a system primarily focused on CHO cell culture, although it is foreseen the information gathered from automated flow cytometry can be applied to a variety of cell lines to address both PAT requirements and gain further understanding of complex biological systems.  相似文献   

15.
Flow cytometry and cell proliferation kinetics   总被引:1,自引:0,他引:1  
Flow cytometric techniques are presented which allow to determine parameters of cell proliferation kinetics by means of histogram sequences after special manipulations of the cell culture under investigation: (a) In the stathmokinetic method metaphase blocking agents are applied which allow the cells of the population to continue progression through interphase and accumulate at 4C DNA content. The development of DNA specific histograms during this process is analysed as to the G1 phase duration and the fraction of nonproliferating cells. (b) In the BUdR/Hoechst method the suppression of Hoechst fluorescence after BUdR incorporation during S phase is taken as a means for inducing a temporal change of histogram shapes without perturbing the cell cycle progression of the population. This temporal development of histogram shapes is analysed as to phase duration, whole cycle time and fraction of nonproliferating cells. (c) By combining the BUdR/Hoechst technique with a simultanous DNA specific stain and analysing with a two-parametrical flow cytometer, more information is obtained from each histogram after BUdR incorporation: The location of cells in the cycle at the beginning of the experiment, the cycle stage at cell harvest, and from this the distance and velocity of progression through the cycle during drug incubation. By introduction of these dynamic methods flow cytometry has become a powerful tool for the study of cell proliferation kinetics in culture.  相似文献   

16.
Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples.  相似文献   

17.
Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. However, the dissociated spinal cord tissue is concentrated with myelin debris that can be mistaken for cells and reduce cell count reliability obtained by the flow cytometer. We have advanced a cell preparation method using the OptiPrep gradient system to effectively separate lipid/myelin debris from cells, providing sensitive and reliable quantifications of cellular inflammation in the injured spinal cord by flow cytometry. As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions for SCI.  相似文献   

18.
Fundamentals of flow cytometry   总被引:4,自引:0,他引:4  
Flow cytomelers arc instruments that arc used primarily to measure the physical and biochemical characteristics of biological particles. This technology is used to perform measurements on whole cells as well as prepared cellular constituents, such as nuclei and organelles. Flow cytomcters are investigative tools for a broad range of scientific disciplines because they make measurements on thousands of individual cells/ particles in a matter of seconds. This is a unique advantage relative to other detection instruments that provide bulk particle measurements. Flow cytomety is a complex and highly technical field; therefore, a basic understanding of the technology is essential for all users. The purpose of this article is to provide fundamental information about the instrumentation used for flow cytometry as well as the methods used to analyze and interpret data. This information will provide a foundation to use flow cytometry effectively as a research tool.  相似文献   

19.
Summary Flow cytometry has been used in the selection of fusion products of the yeast Saccharomyces cerevisiae. Parental cells of opposite mating type were stained with different fluorescent dyes, permitting rapid identification of zygotes from natural matings based on dual-color flow cytometry. This procedure was then used to study the kinetics of mating in yeast and the physical and biological parameters that affect these kinetics, such as cell concentration, parental ratios, and parental strain growth rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号