首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cellular and molecular mechanisms of regeneration in Xenopus   总被引:5,自引:0,他引:5  
We have employed transgenic methods combined with embryonic grafting to analyse the mechanisms of regeneration in Xenopus tadpoles. The Xenopus tadpole tail contains a spinal cord, notochord and segmented muscles, and all tissues are replaced when the tail regenerates after amputation. We show that there is a refractory period of very low regenerative ability in the early tadpole stage. Tracing of cell lineage with the use of single tissue transgenic grafts labelled with green fluorescent protein (GFP) shows that there is no de-differentiation and no metaplasia during regeneration. The spinal cord, notochord and muscle all regenerate from the corresponding tissue in the stump; in the case of the muscle the satellite cells provide the material for regeneration. By using constitutive or dominant negative gene products, induced under the control of a heat shock promoter, we show that the bone morphogenetic protein (BMP) and Notch signalling pathways are both essential for regeneration. BMP is upstream of Notch and has an independent effect on regeneration of muscle. The Xenopus limb bud will regenerate completely at the early stages but regenerative ability falls during digit differentiation. We have developed a procedure for making tadpoles in which one hindlimb is transgenic and the remainder wild-type. This has been used to introduce various gene products expected to prolong the period of regenerative capacity, but none has so far been successful.  相似文献   

2.
Liver regeneration   总被引:4,自引:0,他引:4  
Liver regeneration after partial hepatectomy is a very complex and well-orchestrated phenomenon. It is carried out by the participation of all mature liver cell types. The process is associated with signaling cascades involving growth factors, cytokines, matrix remodeling, and several feedbacks of stimulation and inhibition of growth related signals. Liver manages to restore any lost mass and adjust its size to that of the organism, while at the same time providing full support for body homeostasis during the entire regenerative process. In situations when hepatocytes or biliary cells are blocked from regeneration, these cell types can function as facultative stem cells for each other.  相似文献   

3.
4.
A V Pavlov 《Ontogenez》1988,19(4):394-399
Contribution of proliferation and hypertrophy of the epitheliocytes to the growth and regeneration of the rat parathyroid glands was estimated using organo- and cytometry, cytophotometry of DNA content in the nuclei and determination of mitotic index. During postnatal development and in the case of hypertrophy of the adult glands following a moderate resection (50%), the gland growth is provided by mitotic divisions of the parathyroid cells, rather than by the increase in cell size. When up to 75 and 90% of the gland volume is removed, cell hyperplasia is accompanied by stable hypertrophy of the parathyroid cells unrelated to their polyploidization. The contribution of nonmitotic cell hypertrophy to the total increment of the organ volume amounts to 40-50%.  相似文献   

5.
 Crinoid echinoderms can provide a valuable experimental model for studying all aspects of regenerative processes from molecular to macroscopic level. Recently we carried out a detailed study into the overall process of arm regeneration in the crinoid Antedon mediterranea and provided an interpretation of its basic mechanisms. However, the problem of the subsequent fate of the amputated arm segment (explant) once isolated from the animal body and of its possible regenerative potential have never been investigated before. The arm explant in fact represents a simplified and controlled regenerating system which may be very useful in regeneration experiments by providing a valuable test of our hypotheses in terms of mechanisms and processes. In the present study we carried out a comprehensive analysis of double-amputated arm explants (i.e. explants reamputated at their distal end immediately after the first proximal amputation) subjected to the same experimental conditions as the regenerating donor animals. Our results showed that the explants undergo similar regenerative processes but with some significant differences to those mechanisms described for normal regenerating arms. For example, whilst the proximal-distal axis of arm growth is maintained, there are differences in terms of the recruitment of cells which contribute to the regenerating tissue. As with normal regenerating arms, the present work focuses on (1) timing and modality of regeneration in the explant; (2) proliferation, migration and contribution of undifferentiated and/or dedifferentiated/transdifferentiated cells; (3) putative role of neural growth factors. These problems were addressed by employing a combination of conventional microscopy and immunocytochemistry. Comparison between arm explants and regenerating arms of normal donor adults indicates an extraordinary potential and regenerative autonomy of crinoid tissues and the cellular plasticity of the phenomenon. Received: 9 March 1998 / Accepted: 5 June 1998  相似文献   

6.
Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation   总被引:51,自引:0,他引:51  
cdc2 kinase regulates the progression of eukaryotic cells through the division cycle. Events such as cell growth, DNA replication and mitosis are coordinated through the activation of specific forms of this kinase. Here I discuss our present knowledge of the mechanisms that regulate the activity of cdc2 kinase.  相似文献   

7.
Apoptosis is a genetically programmed cell death that is required for morphogenesis during embryogenic development and for tissue homeostasis in adult organisms. In most cases, apoptosis involves cytochrome c release from mitochondria. In the cytosol, cytochrome c combines with APAF-1 in the presence of ATP to activate caspase-9 that, in turn, activates effectors caspases such as caspase-3. Bcl-2 and related proteins control cytochrome c release from the mitochondria whereas IAP (for Inhibitor of APoptosis) molecules modulate the activity of caspases. Plasma membrane receptors such as Fas (CD95, APO-1), characterized by a so-called "death domain" in their cytoplasmic domain, can activate the caspase cascade through adaptator molecules such as FADD (Fas-Associated protein with a Death Domain). Dysregulation of the apoptotic machinery plays a role in the pathogenesis of various diseases and molecules involved in cell death pathways are potential therapeutic targets in immunologic, neurologic, cancer, infectious and inflammatory diseases.  相似文献   

8.
9.
Liver regeneration: from myth to mechanism   总被引:19,自引:0,他引:19  
The unusual regenerative properties of the liver are a logical adaptation by organisms, as the liver is the main detoxifying organ of the body and is likely to be injured by ingested toxins. The numerous cytokine- and growth-factor-mediated pathways that are involved in regulating liver regeneration are being successfully dissected using molecular and genetic approaches. So what is known about this process at present and which questions remain?  相似文献   

10.
11.
12.
We have previously shown that the growth response of the rat thyroid to a sustained elevation of the serum level of TSH, induced by goitrogen administration, is self-limiting. This study investigated the possibility that this limitation of growth is due to the inhibitory action of a chalone secreted by the thyroid follicular cells, the serum concentration of which increases as the gland grows. Twenty-seven adult rats were treated with the goitrogen aminotriazole for 5 months to reach a 'plateau of growth'. One group of 9 rats was then subjected to hemithyroidectomy, another to a sham operation, while a third acted as unoperated controls. Four weeks later there was no significant difference between the groups in thyroid weight, follicular cell number or serum TSH. The absence of regeneration following hemithyroidectomy indicates that a systemically-circulating chalone does not play a role in the regulation of growth in the goitrous thyroid. Other mechanisms including the possible role of a 'local' chalone are briefly discussed.  相似文献   

13.
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.  相似文献   

14.
The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then later homeostatic signals in AP axis regeneration.  相似文献   

15.
16.
17.
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.  相似文献   

18.
19.
As organisms have evolved in size and complexity, tubular systems have developed to enable the efficient transport of substances into and out of tissues. These tubular systems are generated using strategies that are based on common elements of cell behaviour, including cell polarization, tube migration to target sites, cell-fate diversification and localization of specialized cells to different regions of the tube system. Using examples from both invertebrate and vertebrate systems, this review highlights progress in understanding these basic principles and briefly discusses the possible evolution of strategies to regulate the morphogenesis of tubular systems.  相似文献   

20.
In tree species native to temperate and boreal regions, the activity-dormancy cycle is an important adaptive trait both for survival and growth. We discuss recent research on mechanisms controlling the overlapping developmental processes that define the activity-dormancy cycle, including cessation of apical growth, bud development, induction, maintenance and release of dormancy, and bud burst. The cycle involves an extensive reconfiguration of metabolism. Environmental control of the activity-dormancy cycle is based on perception of photoperiodic and temperature signals, reflecting adaptation to prevailing climatic conditions. Several molecular actors for control of growth cessation have been identified, with the CO/FT regulatory network and circadian clock having important coordinating roles in control of growth and dormancy. Other candidate regulators of bud set, dormancy and bud burst have been identified, such as dormancy-associated MADS-box factors, but their exact roles remain to be discovered. Epigenetic mechanisms also appear to factor in control of the activity-dormancy cycle. Despite evidence for gibberellins as negative regulators in growth cessation, and ABA and ethylene in bud formation, understanding of the roles that plant growth regulators play in controlling the activity-dormancy cycle is still very fragmentary. Finally, some of the challenges for further research in bud dormancy are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号