首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The relationship between surficial sediment diatom taxa (Bacillariophyceae) and measured limnological variables in forty-six British Columbia lakes was explored using canonical correspondence analysis (CCA). Lake-water total phosphorus concentration (TP), maximum lake depth, conductivity, and calcium concentration each accounted for independent and statistically significant directions of variation in the distribution of diatom taxa. 2. Weighted-averaging (WA) models were developed to infer lake-water TP from the relative abundances of 131 diatom taxa in the surficial sediments of thirty-seven lakes. WA regression and calibration with classical deshrinking provided the best model for TP reconstructions. 3. Our quantitative inference model has two major advantages over existing multiple linear-regression models: (i) inferences are based on the responses of individual taxa to TP, and do not involve grouping the taxa into a small number of ecological categories; and (ii) the model assumes that diatoms respond to TP in a unimodal, rather than a linear, fashion. 4. The WA model can now be used to infer past lake-water TP, within the range 5–28νgr1?1, from diatoms preserved in the sediments of British Columbia lakes. The model can provide quantitative estimates of the onset, rate, and magnitude of lake eutrophication in response to natural processes and human disturbances.  相似文献   

2.
Four thousand eight hundred years ago hemlock (Tsuga canadensis) populations were decimated throughout eastern North America. We have studied the effects of this loss from the terrestrial community on three Southern Ontario lakes: Little Round Lake, Sunfish Lake, and McKay Lake. This study includes the use of cladocerans, diatoms, chrysophytes, and bacterial pigments to assess the limnologic changes that occurred in these lakes. Each lake experienced a change in trophic status that coincided with the loss of hemlock from its catchment, but the change in the aquatic biota was different in each lake. The lakes' size may have been the most influential factor governing the response to this terrestrial disturbance.  相似文献   

3.
Intensification of catchment agriculture has increased nutrient loads and accelerated eutrophication in some lakes, often resulting in episodic harmful algal blooms or prolonged periods of anoxia. The influence of catchment agriculture on lake sediment denitrification capacity as a nitrogen (N) removal mechanism in lakes is largely unknown, particularly in contrast to research on denitrification in agricultural streams and rivers. We measured denitrification enzyme activity (DEA) to assess sediment denitrification potential in seven monomictic and three polymictic lakes that range in the proportion of agriculture in the catchment from 3 to 96% to determine if there is a link between agricultural land use in the lake catchment and sediment denitrification potential. We collected sediment cores for DEA measurements over 3 weeks in austral spring 2008 (October–November). Lake Okaro, with 96% catchment agriculture, had approximately 15 times higher DEA than Lake Tikitapu, with 3% catchment agriculture (232.2 ± 55.9 vs. 15.9 ± 4.5 μg N gAFDM−1 h−1, respectively). Additionally, sediment denitrification potential increased with the proportion of catchment in agriculture (R 2 = 0.85, P < 0.001). Our data suggest that lakes retain a high capacity to remove excess N via denitrification under increasing N loads from higher proportions of catchment agriculture. However, evidence from the literature suggests that despite a high capacity for denitrification and longer water residence times, lakes with high N loads will still remove a smaller proportion of their N load. Lakes have a denitrification potential that reflects the condition of the lake catchment, but more measurements of in situ denitrification rates across lake catchments is necessary to determine if this capacity translates to high N removal rates.  相似文献   

4.
1. We explored patterns of limnological variables (physical, chemical and biological) with relation to landscape position (expressed as lake order) in 86 study lakes located on shield bedrock in south‐central Ontario, Canada. 2. Using anova s with lake order as the categorical variable, landscape position explained significant amounts of variation in major ion chemistry, physical and catchment characteristics, hypolimnetic oxygen, and community composition in algal (diatom, chrysophyte) and invertebrate (chironomid) assemblages preserved in surficial sediments. Several nutrient variables (TP, total phosphorus and TN, total nitrogen) and dissolved organic carbon did not have significant relationships with lake order. 3. The strongest relationships with lake order (as a fraction of variation explained in anova s) included silica concentrations (r2 = 0.40) and SO4 (r2 = 0.29) concentrations, surface area (r2 = 0.50) and hypolimnetic oxygen (r2 = 0.29). 4. Bedrock geology (carbonate metasedimentary versus non‐carbonate bedrock) had strong influences on spatial gradients of pH and major ion chemistry. It was difficult to separate geological influences from spatial influences on limnological variables in this study, as drainage patterns in the region are highly influenced by surface features of underlying geological formations because of the very thin glacial till or exposed bedrock that exists in most catchments. 5. Patterns of limnological variables indicated that low‐order, headwater lakes had the lowest concentrations of major ions, and, from algal inferences of pH change, had been most susceptible to acidic deposition. High‐order, downstream lakes were larger and deeper, and had higher concentrations of hypolimnetic oxygen, indicating that optimal lake trout habitat was primarily located in high‐order lakes. 6. Variance partitioning analyses indicated that lake order as a metric of landscape position explained comparable portions of community variation in algal and invertebrate assemblages compared with geographic position (latitude, longitude) and Cartesian coordinate position (e.g. x, y, x2, y2, etc.) metrics. Lake order explained more community variation in chironomid assemblages compared with other landscape metrics, possibly because of the strong relationships between lake order and lake morphometry variables.  相似文献   

5.
Water quality of the shallow, mesotrophic, and macrophyte-dominated Lake Kaljasjärvi has been monitored at three to four year intervals since 1978. During the monitoring period, surface-water total phosphorus (TP) concentrations have typically varied between 20 and 25 g P l–1. However, elevated total phosphorus concentrations were measured in 1987, 1991, and 1999. Diatom-based reconstruction of the historical lake-water TP concentrations was therefore employed to study the recent development of the lake. However, the diatom-TP model did not predict the high measured phosphorus concentrations despite the changes observable in diatom assemblages. In addition, the ratio of sedimentary diatom remains to chrysophycean stomatocysts declined towards the top of the sediment core, indicating decreasing trophy rather than eutrophication. Analysis of sedimentary pigments and phosphorus fractions, used to examine further the changes, also produced results that contradicted the simple eutrophication hypothesis. In particular, the proportion of chlorophyll derivatives instead of carotenoids increased and there was a rise in the concentration of refractory instead of NaOH-extracted phosphorus. These features appear to be related to the extensive littoral areas of the lake since enhanced littoral production can explain both the observed changes in sediment chemistry and the low diatom-inferred TP (DI-TP). Littoral primary producers are suggested to have benefited from the increased phosphorus inputs to the lake, transferring some of the phosphorus to the detrital pool and contributing to the increased pigment concentrations of sedimentary organic matter. High proportions of non-planktonic diatoms in the samples lower DI-TP because periphytic taxa are assigned low TP optima in the inference models used. Abundant aquatic macrophytes may also have made the lake resistant to eutrophication by assimilating nutrients, providing refuge for zooplankton, and having an allelopathic effect on phytoplankton. Since 1980, however, the sedimentary diatom assemblages also indicate increasingly eutrophic conditions. Additional loading from numerous cottages during the last 20 years seems to have caused observable changes in the phytoplankton communities.  相似文献   

6.
Coherent timing of agricultural expansion, fertilizer application, atmospheric nutrient deposition, and accelerated global warming is expected to promote synchronous fertilization of regional surface waters and coherent development of algal blooms and lake eutrophication. While broad‐scale cyanobacterial expansion is evident in global meta‐analyses, little is known of whether lakes in discrete catchments within a common lake district also exhibit coherent water quality degradation through anthropogenic forcing. Consequently, the primary goal of this study was to determine whether agricultural development since ca. 1900, accelerated use of fertilizer since 1960, atmospheric deposition of reactive N, or regional climate warming has resulted in coherent patterns of eutrophication of surface waters in southern Alberta, Canada. Unexpectedly, analysis of sedimentary pigments as an index of changes in total algal abundance since ca. 1850 revealed that while total algal abundance (as β‐carotene, pheophytin a) increased in nine of 10 lakes over 150 years, the onset of eutrophication varied by a century and was asynchronous across basins. Similarly, analysis of temporal sequences with least‐squares regression revealed that the relative abundance of cyanobacteria (echinenone) either decreased or did not change significantly in eight of the lakes since ca. 1850, whereas purple sulfur bacteria (as okenone) increased significantly in seven study sites. These patterns are consistent with the catchment filter hypothesis, which posits that lakes exhibit unique responses to common forcing associated with the influx of mass as water, nutrients, or particles.  相似文献   

7.
Lake Taihu suffers from eutrophication caused by riverine nutrient inputs and air deposition. To characterize wet deposition of phosphorus (P) and nitrogen (N) to the lake, precipitation collection and measurements of total phosphorus (TP) and total nitrogen (TN) and other components at five cities around Lake Taihu were made from July 2002 to June 2003. TP and TN concentrations and deposition rates exhibited strong spatial variation in the whole catchment. An inverse correlation between station-averaged TP and TN concentrations and precipitation amount was found. Maximal TP concentration in rainfall was found in Suzhou, and maximal TN in Wuxi. However, highest wet deposition rates of TP and TN were found in Suzhou, which suggests that atmospheric nutrients are mostly from the east and northwest area of Lake Taihu. Mean TP and TN deposition rates were 0.03 and 2.0 t km−2 year−1 respectively in Lake Taihu, which are greater than reported values in other areas by comparision. Total N and P contributed to the lake by wet deposition were 75 and 4720 t per year, respectively, which represent about 7.3% and 16.5% of total annual N and P inputs via inflow rivers. Wet deposition, especially N, could have significant effects on eutrophication in the lake, which shows that air deposition should be taken into account while reducing the external nutrients in the lake.  相似文献   

8.
Using published paleolimnological results from 14 dimictic calcareous lakes, this study identifies total phosphorous (TP) reference values for the European lake type CB 1. The initial increase in settlement-associated pollen occurred in the catchments between ad ~1000 and ~1820. A departure from diatom-inferred TP reference conditions occurred during periods of increased human activities during Early to Late Medieval Times (ad ~1110–1325; four lakes), early Modern Times (ad ~1575–1600; two lakes), after the 30 years’ war (>ad 1650; two lakes) and during the Anthropocene (after ad ~1850, three lakes). Only one lake continuously has TP reference values until recent days, whilst TP reference values could not be detected in two cases. Thus, we refrain from setting a fixed point in time for defining reference conditions for lakes in the European Central Plains. This study also validates TP reference levels calculated based on common lake models for CB 1-lakes and assesses the range of TP reference levels using paleolimnological diatom studies. The highly variable diatom-inferred TP reference levels only partly support the modelled levels. Thus, we recommend using two subtypes (CB 1a and 1b), based on the watershed to volume ratio to better meet the requirements of lake type-specific reference levels.  相似文献   

9.
Lake eutrophication is influenced by both anthropogenic and natural factors. Few studies have examined relationships between eutrophication parameters and natural factors at a large spatial scale. This study explored these relationships using data from 103 lakes across China. Eutrophication parameters including total nitrogen (TN), total phosphorus (TP), TN:TP ratio, chemical oxygen demand (CODMn), chlorophyll-a (Chl-a), Secchi depth (SD), and trophic state index (TSI) were collected for the period 2001–2005. Sixteen natural factors included three of geographic location, five of lake morphology, and eight of climate variables. Pearson correlation analysis showed that TP and TSI were negatively related to elevation, lake depth, and lake volume, and positively related to longitude. All eutrophication parameters, except for CODMn and Chl-a, showed no significant correlation with climate variables. Multiple regression analyses indicated that natural factors together accounted for 13–58% of the variance in eutrophication parameters. When the 103 study lakes were classified into different groups based on longitude and elevation, regression analyses demonstrated that natural factors explained more variance in TN, TP, CODMn, Chl-a, and TSI in western lakes than in eastern lakes. Lake depth, volume, elevation, and mean annual precipitation were the main predictors of eutrophication parameters for different lake groups. Although anthropogenic impacts such as point- and nonpoint-source pollution are considered as the main determinants of lake eutrophication, our results suggest that some natural factors that reflect lake buffer capacity to nutrient inputs can also play important roles in explaining the eutrophication status of Chinese lakes.  相似文献   

10.
Kitaka  Nzula  Harper  David M.  Mavuti  Kenneth M. 《Hydrobiologia》2002,488(1-3):73-80
The main river supplying Lake Naivasha, Kenya, the Malewa, drains a catchment given over to largely subsistence cultivation and animal husbandry. The lake itself is the focus for an intensive horticultural industry based upon irrigation from the lake. The Malewa, however, is relatively independent of the impact of industry, and so its contribution to eutrophication of the lake was evaluated. Two periods of study, a very wet-dry and a `normal' wet-dry season showed that the river contribution of phosphorus led to a total phosphorus loading of 1.4 g m–2 lake surface ann–1 in the very wet period compared to 0.2 in the `normal'. Chlorophyll `a' in the open water of the lake was significantly related to soluble reactive phosphorus. The lake is now eutrophic by normal limnological criteria.  相似文献   

11.
Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m?1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.  相似文献   

12.
太湖浮游植物优势种长期演化与富营养化进程的关系   总被引:12,自引:0,他引:12  
利用1991年至2002年每月一次的监测资料,系统分析了浮游植物优势种和生物量的周年变化情况。同时,总氮、总磷和浮游植物叶绿素a含量等相关资料也被用于解释太湖富营养化演化与浮游植物的关系。结果显示,太湖总氮、总磷、叶绿素a和生物量均呈自梅梁湾底至湖心的逐步递减趋势。在20世纪80年代末太湖刚开始富营养化时,浮游植物优势种群从硅藻转变为蓝藻。之后,浮游植物优势种群一直是蓝藻,但各年的浮游植物总生物量有变化。总氮、总磷、叶绿素a和生物量的年均值持续增长至1996年,其后有逐步下降的趋势,究其原因可能和当地政府在太湖流域的控制排污行动有关。微囊藻在太湖的占优是太湖富营养化的标志之一。研究结果说明浮游植物在大型浅水湖泊中可以作为反映富营养化进程的生态指标。  相似文献   

13.
The basic aim of this study was to analyse the influence of calcium on the Chl–TP relationship and to apply the findings to improve dynamic (mechanistically-based) modelling of phosphorus and lake eutrophication. We have analysed long-term data from 73 lakes. The influences of calcium found in these statistical analyses have been integrated into a dynamic foodweb model, the LakeWeb-model, which also includes a mass-balance model for phosphorus. Differences in the model outcome between simulations without and with considerations to the role of calcium are discussed. We can conclude that calcium is an important factor influencing both the Chl–TP relationship and Secchi depths in mesotrophic and eutrophic lakes. Our results also indicate that lakes with long-term median Ca-concentration between 10–30mg/l function as hardwater lakes. The results also stress the importance of taking a holistic view of lakes since the bedrock, soils and land-use activities in the catchment influence the calcium concentration in lakes and therefore the phosphorus cycle, water clarity and the productivity of a given lake. The predictive power of the Chl–TP regression increases markedly if hardwater lakes are omitted from the model domain. For lake foodweb and mass-balance modelling, we show that the inclusion of the presented calcium moderator clearly improved the predictions of lake TP-concentrations in water and sediments, chlorophyll and Secchi depths in Lake Erken, a hardwater lake in Sweden.  相似文献   

14.
湖南省大通湖百余年环境演化历史及营养物基准的建立   总被引:1,自引:0,他引:1  
科学有效地治理退化湖泊需要知晓湖泊的演化历史,并设立合理的参照目标(即环境基准)来及时评判治理效果.湖南省大通湖位于经济发达的长江中下游地区,发挥着重要的湖泊水生态系统服务功能.在强烈的人类活动干扰下,该湖近年来生态系统退化严重,但其水环境演变的历史缺少详细的记录.研究对大通湖沉积钻孔的年代、烧失量、化学元素、沉积物总...  相似文献   

15.
An important factor in the ontogeny of boreal lakes is the development of their humic state through terrigenous input of organic matter (carbon) that affects strongly the functioning and structure of these ecosystems. The long-term dynamics and role of humic substances for these systems in relation to climate are not clear. In this study, a boreal lake from southern Finland was investigated using paleolimnological methods, including diatom, chironomid and geochemical analyses, for Late Holocene changes in the humic state. The aim was to examine the relationship between sediment biogeochemistry and climate variation. Consistent trends were found in diatom-inferred total lake-water organic carbon (TOC) and in the ratio of humic/oligohumic chironomids. Sediment geochemistry provided further evidence for the limnological development of the lake and related long-term climate trends in the region. The results indicated three distinct phases with differing humic state; the beginning of the record at ca. 4,500 cal year BP was characterized by extremely humic conditions coinciding with warm and dry climatic conditions, a meso-oligohumic period between ca. 3,000–500 cal year BP with increasing allochthonous organic matter transport and cooler and wetter climate, and recent period with polyhumic (TOC >10 mg L?1) lake status and warming climate. This study shows that instead of straightforward linear development, boreal lakes evolve through dynamic humic stages related to climate and lake-catchment coupling processes. As the changes in the humic state are ultimately climate-driven, the ongoing climate change probably has a major influence on boreal lakes through direct and indirect effects on organic carbon transport, utilization and accumulation.  相似文献   

16.
17.
Records of a lake's life in time: the sediments   总被引:4,自引:2,他引:2  
The evidence from analysis of cores from lake sediments is used to identify the influences which, acting through time, have brought about changes in the lakes of the English Lake District. These are: i. climatic changes, recorded mainly in microfossil assemblages ii. soil dynamics on catchments — the natural soil development of an interglacial cycle and its effect on water composition, and iii. perturbations of input resulting from activities of man.The present position of each of 14 lakes in a series of increasing eutrophication is shown to be the result of two processes of modification by man. The first was a significant reduction in volume of the hypolimnion of the shallow lakes, consequent on the accelerated rate of sediment accumulation which followed deforestation and cultivation of catchments in all the lakes — this did not affect the biology of the deep lakes. The second has been the introduction of human and animal wastes into some of the lakes during the last 120 years, which imposed on affected lakes a process of more rapid change which was more intense in the shallow lakes.  相似文献   

18.
1. Sediment cores were taken from six lakes in Northern Ireland: Loughs Heron, Ballywillin, Corbet, Patrick, Brantry and Creeve. The present-day total phosphorus (TP) concentrations of these lakes range from around 30 to 400 μg TP l–1. None of the lakes have sewage point-sources disposing into them, and all have primarily agricultural catchments. 2. Sediment cores were dated using 210Pb. The cores cover time periods ranging from about 100 years at Lough Corbet to periods considerably greater than the range of 210Pb (more than 150 years), Lough Patrick. 3. Diatom stratigraphies indicate considerable ecological change at all the lakes, regardless of their current nutrient status. Epilimnetic phosphorus concentrations were inferred using weighted averaging regression and calibration. Diatom-inferred TP values for the core surface samples agreed reasonably well with the contemporary values. Pre-1900 TP concentrations range from about 10 μg TP l–1 at Lough Patrick to 80 μg TP l–1 at Lough Corbet. The higher values prior to 1900 are assumed to relate to land-clearance activities and the expansion of agriculture associated with the Plantation period. 4. Although there are increasing diatom-inferred TP concentrations between 1850 and 1900 at some sites, there is a final and more marked increase at all lakes after 1950. Phosphorus concentrations have increased at all lakes, by between a factor of three to five, over an average 50-year period. At four of the lakes, TP concentrations have been increasing linearly from around 1950 to the present day, suggesting that, in general, there is little sign of amelioration of the eutrophication problem. 5. The post-1950 increases are assumed to relate to changes in agricultural activity within their catchments, notably the continued improvement in field drainage, which has facilitated transfer of nutrients to water courses and lakes and increasing soil-P concentration due to a positive annual-P balance. Another factor, probably associated with increased animal grazing densities and improvement of grassland, is the application of animal slurries, which appears to be a largely unquantified factor.  相似文献   

19.
1. The Yangtze floodplain (SE China) is characterized by a number of large shallow lakes, many of which have undergone eutrophication due to the intensification of agriculture and urban growth over recent decades. As monitoring data are limited and in order to determine lake baseline nutrient concentrations, 49 lakes were sampled, covering a total phosphorus (TP) gradient (c. 30–550 μg L−1) to develop a diatom-based inference model. 2. There are three dominant diatom assemblages in these shallow lakes with a marked change in assemblage structure near the boundary between eutrophic and hypereutrophic nutrient levels (as indicated by their TP value). Canonical correspondence analysis indicated that TP was the most important and significant variable in explaining the diatom distributions, independently accounting for 9.5% variance of diatoms. 3. Forty-three lakes were used to generate a transfer function using weighted averaging (WA) with inverse deshrinking. This model had low predictive error (root mean squared error of prediction; RMSEPjack = 0.12) and a high coefficient of prediction (R2jack = 0.82), comparable with regional TP models elsewhere. The good performance of this TP model may reflect the low abundance of benthic diatom species which are commonly regarded as the main error source in European shallow lake WA models. 4. The WA model was used to reconstruct the past-TP concentrations for Taibai Lake, a shallow hypereutrophic lake in Hubei province. The results showed that TP concentration varied slightly (43–62 μg L−1) prior to the 1920s, indicating an eutrophic state since the 1800s. A period of sustained eutrophication occurred after 1950, because of the development of agriculture, reflecting by maximum values of Aulacoseira alpigena and increased abundance of Cyclotella meneghiniana, C. atomus and Cyclostephanos dubius. The steep increase in nutrient concentration after 1970 was related to the overuse of chemical fertilizer and fish farming in the catchment. 5. The shift in fossil diatoms from epiphytic to planktonic forms in the lake sediment core during 1950–70 provides useful information on the transformation from macrophyte-dominated to alga-dominated states. It is plausible that the TP concentration of 80–110 μg L−1 observed in this study is the critical range for switching between the two stable states in the lake. 6. The regional diatom-TP model developed in this study allows, therefore, the possibility of reconstructing historical background nutrient concentrations in lakes. It will provide an indication of the onset and development of eutrophication at any site. This is particularly important for the many lakes in the Yangtze floodplain where information about historical changes in water quality is lacking.  相似文献   

20.
Planted forests are increasing in many upland regions worldwide, but knowledge about their potential effects on algal communities of catchment lakes is relatively unknown. Here, the effects of afforestation were investigated using palaeolimnology at six upland lake sites in the north‐west of Ireland subject to different extents of forest plantation cover (4–64% of catchment area). 210Pb‐dated sediment cores were analysed for carotenoid pigments from algae, stable isotopes of bulk carbon (δ13C) and nitrogen (δ15N), and C/N ratios. In lakes with >50% of their catchment area covered by plantations, there were two‐ to sixfold increases in pigments from cryptophytes (alloxanthin) and significant but lower increases (39–116%) in those from colonial cyanobacteria (canthaxanthin), but no response from biomarkers of total algal abundance (β‐carotene). In contrast, lakes in catchments with <20% afforestation exhibited no consistent response to forestry practices, although all lakes exhibited fluctuations in pigments and geochemical variables due to peat cutting and upland grazing prior to forest plantation. Taken together, patterns suggest that increases in cyanobacteria and cryptophyte abundance reflect a combination of mineral and nutrient enrichment associated with forest fertilization and organic matter influx which may have facilitated growth of mixotrophic taxa. This study demonstrates that planted forests can alter the abundance and community structure of algae in upland humic lakes of Ireland and Northern Ireland, despite long histories of prior catchment disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号