首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study was to examine the effects of lactate, protons, inorganic phosphate, and ATP on myofibrillar ATPase activity. Myofibrils were isolated from carp (Cyprinius carpio L.) fast-twitch white muscle, and myofibrillar ATPase activities were assessed under maximal activating calcium levels (pCa 4.0) at 10 degrees C in reaction media containing metabolic profiles similar to those seen in fatiguing muscles. The Ca(2+)-activated ATPase activity was assessed by an ATP regenerating assay that coupled the myofibrillar ATPase to pyruvate kinase and lactate dehydrogenase. This assay allowed the effects of ATP, inorganic phosphate, protons, and lactate on myofibrillar ATPase activity to be assessed. The coupled assay was found to give similar myofibrillar ATPase kinetics, with the exception of higher maximal activities, to those seen with a standard end-point assay. Myofibrillar ATPase activity was depressed by 35% when ATP concentrations were lowered to 2.5 mM. Lowering ATP levels to 0.5 mM reduced the myofibrillar ATPase activities by 85%. Lactate had no effect on myofibrillar ATPase activities. Inorganic phosphate levels up to about 20 mM significantly decreased the myofibrillar ATPase activities, after which further increases in inorganic phosphate content had minimal effects. The changes in ATPase activities were related to total inorganic phosphate, not to the content of diprotonated inorganic phosphate. Myofibrillar ATPase activity was highest at pH 7.5 and lowest at pH 6.0. The interactive effects of low ATP, decreased pH, and high inorganic phosphate levels were not additive, giving similar decreases in activity to those produced by increased inorganic phosphate levels alone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The kinetics and activation energy of entry of pyruvate and lactate into the erythrocyte were studied at concentrations below 4 and 15mM respectively. The Km and Vmax. values for both substrates are reported, and it is shown that pyruvate inhibits competitively with respect to lactate and vice versa. In both cases the Km for the carboxylate as a substrate was the same as its Ki as an inhibitor. Alpha-Cyano-4-hydroxycinnamate and its analogues inhibited the uptake of both lactate and pyruvate competitively. Inhibition was also produced by treatment of cells with fluorodinitrobenzene but not with the thiol reagents or Pronase. At high concentrations of pyruvate or lactate (20mM), uptake of the carboxylate was accompanied by an efflux of Cl-ions. This efflux of Cl- was inhibited by alpha-cyano-4-hydroxycinnamate and picrate and could be totally abolished by very low (less than 10 muM) concentrations of the inhibitor of Cl- transport, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid. This inhibitor titrated out the chlordie efflux induced by pyruvate, bicarbonate, formate and fluoride, in each case total inhibition becoming apparent when approximately 1.2x10(6) molecules of inhibitor were present per erythrocyte, that is, about one inhibitor molecule per molecule of the Cl- carrier. Evan when Cl- efflux was totally blocked pyruvate and lactate uptake occurred. Kinetic evidence is presented which suggests that the Cl- carrier can transport pyruvate and lactate with a high Km and high Vmax., but that an additional carrier with a low Km and a low Vmax. also exists. This carrier catalyses the exchange of small carboxylate anions with intracellular lactate, is competitively inhibited by alpha-cyano-4-hydroxycinnamate and non-competitively inhibited by picrate. The Cl- carrier shows a reverse pattern of inhibition. It is concluded that net efflux of lactic acid from the cell must occur on the Cl- carrier and involve exchange with HCO3 - followed by loss of CO2. The low Km carrier might be used in pyruvate/lactate or acetoacetate/beta-hydroxybutyrate exchanges involved in transferring reducing power across the cell membrane. The possibility that the Cl- carrier exists in cells other than the erythrocyte is discussed. It is concluded that its presence in other cell membranes together with a low intracellular Cl- concentration would explain why the pH in the cytoplasm is lower than that of the blood, and why permeable carboxylate anions do not accumulate within the cell when added from outside.  相似文献   

3.
The effect of a single bout of exhaustive exercise on muscle lactate transport capacity was studied in rat skeletal muscle sarcolemmal (SL) vesicles. Rats were assigned to a control (C) group (n = 14) or an acutely exercised (E) group (n = 20). Exercise consisted of treadmill running (25 m/min, 10% grade) to exhaustion. SL vesicles purified from C and E rats were sealed because of sensitivity to osmotic forces. The time course of 1 mM lactate uptake in zero-trans conditions showed that the equilibrium level in the E group was significantly lower than in the C group (P < 0.05). The initial rate of 1 mM lactate uptake decreased significantly from 2.44 +/- 0.22 to 1.03 +/- 0.08 nmol. min(-1). mg protein(-1) (P < 0.05) after exercise, whereas that of 50 mM lactate uptake did not differ significantly between the two groups. For 100 mM external lactate concentration ([lactate]), exhaustive exercise increased initial rates of lactate uptake (219.6 +/- 36.3 to 465.4 +/- 80.2 nmol. min(-1). mg protein(-1), P < 0.05). Although saturation kinetics were observed in the C group with a maximal transport velocity of 233 nmol. min(-1). mg protein(-1) and a Michealis-Menten constant of 24.5 mM, saturation properties were not seen after exhaustive exercise in the E group, because initial rates of lactate uptake increased linearly with external [lactate]. We conclude that a single bout of exhaustive exercise significantly modified SL lactate transport activity, resulting in a decrease in 1 mM lactate uptake and was associated with alterations in the saturable properties at [lactate] above 50 mM. These results suggest that changes in sarcolemmal lactate transport activity may alter lactate and proton exchanges after exhaustive exercise.  相似文献   

4.
The kinetics of sodium-independent calcium efflux from liver mitochondria has been studied over the range of calcium loads from 2 to 60 nmol/mg with emphasis on the lower portion of this range. A procedure has been developed through which mitochondria may be depleted of endogenous calcium (initially in the range of 6-10 nmol/mg following preparation) to values as low as 2 nmol/mg, without involving substrate depletion or de-energization. Mitochondria depleted of calcium by this technique are more resistant to the calcium-induced permeability transition than are those depleted by the older procedures and are therefore appropriate for the kinetics studies. Calcium depletion is necessary in studying the kinetics of sodium-independent calcium efflux in order to bring efflux to a rate considerably less than 50% of the saturation rate. The results of these studies show cooperativity with a Hill coefficient of 1.9 +/- 0.2. They have been fit to an equation representative either of a nonessential activation mechanism with a single transport site or of an Adair-Pauling mechanism with two transport sites. From the fit of the data to this equation, a Vmax of 1.2 +/- 0.1 nmol/mg/min and a concentration of half-maximal activity of 8.4 +/- 0.6 nmol/mg have been obtained. The possible role of phosphate in controlling the Vmax of this transporter has been evaluated by measuring efflux as a function of calcium load at three different concentrations of total inorganic phosphate: 20 microM, 120 microM, and 1 mM. Failure of the maximum transport velocity to decrease with increasing inorganic phosphate indicates that the extreme flatness of the saturation portion of the velocity versus calcium concentration curve observed is not the result of precipitation of calcium with inorganic phosphate but is an inherent property of this efflux mechanism.  相似文献   

5.
L-lactate transport in Ehrlich ascites-tumour cells.   总被引:10,自引:0,他引:10       下载免费PDF全文
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids.  相似文献   

6.
31P and 1H nuclear magnetic resonance spectroscopy has been used to follow noninvasively the time course of energetic metabolite levels in human heart atrial appendages preserved under various temperatures and buffer conditions. From sample harvest up to the normal 5-h time limit for heart preservation, ATP levels in human atrial appendages are much better maintained in 0.9% saline and PIPES-buffered preservation solutions at 12 degrees C than at 4 degrees C. Furthermore, preservation at 12 degrees C can be improved considerably by using high extracellular buffer concentrations. The increased buffer concentration allows better maintenance of the intracellular pH and leads to a faster glycolytic rate as measured by lactate production. At 4 degrees C, ATP levels decline rapidly during the first 5 h but reached a stable plateau, which is well maintained over 15-20 h. At this temperature, the rate of lactate production is similar at all buffer concentrations (20, 60, and 100 mM PIPES). As a consequence of these observations, we postulate that the mechanisms of ATP production and utilization at 4 degrees C and at 12 degrees C are different. At 4 degrees C, the rate of glycolysis is temperature limited whereas at 12 degrees C, low intracellular pH inhibits glycolysis.  相似文献   

7.
Sugar uptake into brush border vesicles from dog kidney. II. Kinetics   总被引:1,自引:0,他引:1  
The kinetics of D-glucose transport over the concentration range 0.07--20 mM have been investigated in a vesiculated membrane preparation from dog kidney cortex. 1. A sodium-dependent and a sodium-independent component of D-glucose uptake are observed. The sodium-dependent component is phlorizin sensitive (KI approximately 0.6 micron) and electrogenic. 2. The sodium-dependent component of D-glucose uptake yields non-linear Eadie-Hofstee plots consistent with the presence of high (GH) and low (GL) affinity sites (KH approximately 0.2 mM, KL approximately 4.5 mM, VL/VH approximately 7 at pH 7.4, 25 degrees C, 100 mM NaC1 gradient). Alternative explanations are cooperative effects of non-Michaelis-Menten kinetics. 3. The initial uptake of D-glucose increases as the intravesicular membrane potential become more negative but the numerical values of KH and KL show little, if any, change. 4. alpha-Methyl-D-glucoside transport is also sodium dependent and phlorizin sensitive (KI approximately 1.9 micron). 5. In contrast to the results for D-glucose, the sodium-dependent component of alpha-methyl-D-glucoside uptake exhibits a nearly linear Eadie-Hofstee plot consistent with a single carrier site with Km approximately 1.9 mM and Vmax approximately 27 nmol/min per mg protein at pH 7.4, 25 degrees C, 100 mM NaCl gradient. 6. The kinetics of D-glucose transport in newborn dog kidney are similar to those in the adult except that the low affinity (GL) system appears to be less well developed.  相似文献   

8.
D-[14C]Glucose self exchange and unidirectional efflux from human red blood cells were studied at 20 degrees C (pH 7.2) by means of the Millipore-Swinnex filtering technique whose time resolution is greater than 1 s and the continuous flow-tube method with a time resolution of greater than 2 ms. The unidirectional efflux data were analyzed using both the method of initial rates and the integrated rate equation. Simple Michaelis-Menten kinetics apply to the results obtained under both experimental conditions. In self-exchange mode, the half-saturation constant, K1/2ex, was 10 (S.E. +/- 1) mM. In unidirectional efflux mode K1/2ue was 6.6 (S.E. +/- 0.5) mM (initial rates) or by the method of integrated rates 7.7 mM, with a range of 2.7-12.1 mM, K1/2ue increasing with an increased initial intracellular glucose concentration. Our results of K1/2ex oppose previous published values of 32 mM for self exchange (Eilam and Stein (1972) Biochim. Biophys. Acta 266, 161-173) and 25 mM for unidirectional efflux (Karlish et al. (1972) Biochim. Biophys. Acta 255, 126-132) that have been used extensively in kinetic considerations of glucose transport models. Under self-exchange conditions Jmaxex was 1.8 x 10(-10) mol cm-2s-1, and in unidirectional efflux mode Jmaxue was 8.3 x 10(-11) mol cm-2s-1 (initial rates) and 8.6 x 10(-11) mol cm-2s-1 (integrated rates). We suggest that the previous high values of Jmax and in particular K1/2 are due to the use of methods with insufficient time resolution. Our results indicate that the transport system is less asymmetric than was generally accepted, and that complicated transport models developed to account for the great difference between the determined K1/2 and J max values are redundant.  相似文献   

9.
The effects of exchangeable ions and pH on the efflux of pyruvate from preloaded mitochondria are reported. Efflux obeys first-order kinetics, and the stimulation of efflux by exchangeable ions such as acetoacetate and lactate obeys Michaelis--Menten kinetics. The apparent Km value +/- S.E. for acetoacetate was 0.56 +/- 0.14 mM (n = 5) and that for lactate 12.3 +/- 2.3 mM (n = 6). The Vmax. values +/- S.E. at 0 degrees C were 16.2 +/- 2.0 and 21.9 +/- 2.7 nmol/min per mg of protein. The exchange of a variety of other substituted monocarboxylates was also studied. Efflux was also stimulated by increasing the external pH. The data gave a pK for the transport process of 8.35 and a Vmax. of 3.31 +/- 0.14 nmol/min per mg. The similarity of the Vmax. values for various exchangeable ions but the difference of this from the Vmax. in the absence of exchangeable ions may indicate that transport of pyruvate occurs with H+ and not in exchange for an OH- ion. The inhibition of transport by alpha-cyano-4-hydroxycinnamate took several seconds to reach completion at 0 degrees C. It is proposed that inhibition occurs by binding to the substrate site and subsequent reaction with an -SH group on the inside of the membrane. The inhibitor can be displaced by substrates that can also enter the mitochondria independently of the carrier and so compete with the inhibitor for the substrate-binding site on the inside of the membrane. A mechanism for transport is proposed that invokes a transition state of pyruvate involving addition of an -SH group to the 2-carbon of pyruvate. Evidence is presented that suggests that ketone bodies may cross the mitochondrial membrane either on the carrier or by free diffusion. The physiological involvement of the carrier in ketone-body metabolism is discussed. The role of ketone bodies and pH in the physiological regulation of pyruvate transport is considered.  相似文献   

10.
Entry of beta-hydroxybutyrate into erythrocytes and thymocytes is facilitated by a carrier (C), as judged from temperature dependence, saturation kinetics, stereospecificity, competition with lactate and pyruvate, and inhibition by moderate concentrations of methylisobutylxanthine, phloretin, or alpha-cyanocinnamate. We studied the dependence of influx and efflux on internal and external pH and [beta-hydroxybutyrate]. Lowering external pH from 8.0 to 7.3 to 6.6 enhanced influx into erythrocytes by lowering entry Km from 29 to 16 to 10 mM, entry V being independent of external pH. Lowering external pH inhibited efflux. At low external pH, external beta-hydroxybutyrate enhanced efflux slightly. At high external pH, external beta-hydroxybutyrate inhibited efflux. Internal acidification inhibited influx and internal alkalization enhanced influx. Internal beta-hydroxybutyrate (betaHB) enhanced influx more in acidified than alkalized cells. These data are compatible with coupled betaHB-/OH- exchange, betaHB- and OH- competing for influx, C:OH- moving faster than C: betaHB-, empty C being immobile. They are also compatible with coupled betaHB-/H+ copermeation, empty C moving inward faster than H+:C:betaHB-, H+:C being immobile, and C:betaHB- (without H+) being so unstable as not to be formed in significant amounts (relative to C, H+:C, and H+:C:betaHB-).  相似文献   

11.
Chloride self-exchange was determined by measuring the rate of 36Cl efflux from human red blood cells at pH 7.2 (0 degrees C) in the presence of fluoride, bromide, iodide, and bicarbonate. The chloride concentration was varied between 10--400 mM and the concentration of other halides and bicarbonate between 10--300 mM. Chloride equilibrium flux showed saturation kinetics. The half-saturation constant increased and the maximum flux decreased in the presence of halides and bicarbonate: the inhibition kinetics were both competitive and noncompetitive. The competitive and the noncompetitive effects increased proportionately in the sequence: fluoride less than bromide less than iodide. The inhibitory action of bicarbonate was predominantly competitive. The noncompetitive effect of chloride (chloride self-inhibition) on chloride transport was less dominant at high inhibitor concentrations. Similarly, the noncompetitive action of the inhibitors was less dominant at high chloride concentrations. The results can be described by a carrier model with two anion binding sites: a transport site, and a second site which modifies the maximum transport rate. Binding to both types of sites increases proportionately in the sequence: fluoride less than chloride less than bromide less than iodide.  相似文献   

12.
Lysosomes, isolated from various organs, exhibited an acidic interior (approximately equal to pH 5.2) when incubated in a buffer at neutral pH. K+-induced proton efflux was observed in spleen lysosomes, but not in liver or kidney lysosomes. The initial velocity of the proton efflux showed saturation kinetics with Km value of about 15 mM K+. Rb+ and Cs+ have an effect similar to K+, while Na+, Li+ or divalent cations have little or no effect. The properties of the K+ induced proton efflux correlated with the K+-induced depolarization of the lysosomes, suggesting the presence of K+-transport system(s) in lysosomal membranes.  相似文献   

13.
Ornithine uptake by rat kidney mitochondria is here first shown by monitoring the reduction of the intramitochondrial pyridine nucleotides which occurs as a result of metabolism of imported ornithine via ornithine aminotransferase and 1-pyrroline-carboxylate dehydrogenase. Ornithine uptake shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.85 mM and 23 nmoles/min x mg protein, respectively) and proves to be inhibited by D-ornithine, inorganic phosphate, praseodimium chloride and mersalyl. Neither malate nor glutamate, but phosphate was found to exchange with ornithine. Phosphate efflux caused by externally added ornithine was shown both as revealed by a c colorimetric assay and as continuously monitored by measuring extramitochondrial reduction of NAD+ in the presence of glyceraldehyde-3-phosphate, glyceraldehyde-3-phosphate dehydrogenase, ADP and 3-phosphoglycerate kinase. The role of ornithine carrier in kidney metabolism will also be discussed.  相似文献   

14.
The increasing prevalence of chronic wounds has significant financial implications for nations with advanced healthcare provision. Although the diseases that predispose to hard‐to‐heal wounds are recognized, their etiology is less well understood, partly because practitioners in wound management lack specialized diagnostic support. Prognostic indicators for healing may be inherent to wound biochemistry but remain invisible under routine clinical investigation; lactate is an example of this. In this study, lactate concentration in exudate obtained from 20 patients undergoing wound management in hospital was variable but in some cases approached or exceeded 20 mM. In vitro viability studies indicated that fibroblasts and endothelial cells tolerated low levels of lactate (1–10 mM), but cell viability was severely compromised by high lactate concentrations (=20 mM). Scratched monolayer experiments revealed that cell migration was affected earlier than viability in response to increasing lactate dose, and this was shown by immunocytochemistry to be associated with cytoskeletal disruption. A prototype enzyme‐based colorimetric assay for lactate generating a color change that was rapid in the context of clinical practise, and capable of functioning within a gel vehicle, was developed with point‐of‐care dipstick applications in mind. A randomized single‐blinded trial involving 30 volunteers and using a color chart to calibrate the assay demonstrated that lactate concentration could be reliably estimated with 5 mM precision; this suggesting that “physiological” and “pathological” lactate concentration could be distinguished. The present data suggest that a dipstick‐type colorimetric assay could comprise a viable diagnostic tool for identifying patients at‐risk from high‐wound lactate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 917–924, 2012  相似文献   

15.
To gain some insight into the process by which both acetylCoA and NADPH, needed for fatty acid synthesis, are obtained, in the cytosol, from the effluxed intramitochondrial citrate, via citrate lyase and malate dehydrogenase plus malic enzyme respectively, the capability of externally added pyruvate to cause efflux of malate from rat liver mitochondria was tested. The occurrence of a pyruvate/malate translocator is here shown: pyruvate/malate exchange shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.25 mM and 2.7 nmoles/min x mg mitochondrial protein, respectively) and is inhibited by certain impermeable compounds. This carrier, together with the previously reported tricarboxylate and oxodicarboxylate translocators proved to allow for citrate and oxaloacetate efflux due to externally added pyruvate.  相似文献   

16.
The lactate concentration gradient and the components of the electrochemical proton gradient (delta micro H+) were determined in cells of Streptococcus cremoris growing in batch culture. The membrane potential (delta psi) and the pH gradient (delta pH) were determined from the accumulation of the lipophilic cation tetraphenylphosphonium and the weak acid benzoate, respectively. During growth the external pH decreased from 6.8 to 5.3 due to the production of lactate. Delta pH increased from 0 to -35 mV, inside alkaline (at an external pH of 5.7), and fell to zero directly after growth stopped. Delta psi was nearly constant at -90 mV during growth and also dissipated within 40 min after termination of growth. The internal lactate concentration decreased from 200 mM at the beginning of growth (at pH 6.8) to 30 mM at the end of growth (at pH 5.3); the external lactate concentration increased from 8 to 30 mM due to the fermentation of lactose. Thus, the lactate gradient decreased from 80 mV to zero as growth proceeded and the external pH decreased. From the data obtained on delta psi, delta pH, and the lactate concentration gradient, the H+/lactate stoichiometry (n) was calculated. The value of n varied with the external pH from 1.9 (at pH 6.8) to 0.9 (at pH values below 6). This implies that especially at high pH values the carrier-mediated efflux of lactate supplies a significant quantity of metabolic energy to S. cremoris cells. At pH 6.8 this energy gain was almost two ATP equivalents per molecule of lactose consumed if the H+/ATP stoichiometry equals 2. These results supply strong experimental evidence for the energy recycling model postulated by Michels et al.  相似文献   

17.
Y Okuno  L Plesner  T R Larsen  J Gliemann 《FEBS letters》1986,195(1-2):303-308
Transport of the nonmetabolizable hexose analogue 3-O-methyl-D-glucose (30MG) was measured in human polymorphonuclear leukocytes at 37 degrees C, pH 7.4. 3OMG at very low concentration (0.05 mM) equilibrated with the intracellular water with a rate constant of about 0.08 s-1. Transport of 3OMG in the presence of 20 microM cytochalasin B and transport of L-glucose were insignificant. Countertransport of 14C-labelled 3OMG was demonstrated. Exchange of 3OMG between the extracellular and intracellular water showed saturation with a Km of about 4 mM. Thus, the transport of 3OMG is mediated almost exclusively by facilitated diffusion.  相似文献   

18.
The transport and metabolism of glucose was examined in monolayers of C-6 glioma cells. 1) Glucose transport appeared to have both a low (Km = 7.74 mM) and a high (Km = 1.16 mM) affinity site in C-6cells; whereas 2-deoxyglucose had only one (Km = 3.7 mM). 2) A large portion of the accumulated glucose was rapidly metabolized to the two glycolytic end products, lactate and pyruvate, and then extruded into the medium. The temperature-dependent efflux of lactate and pyruvate was linear up to 2 hrs with 6 to 10 times more lactate being extruded into the medium than pyruvate. 3) The efflux of lactate and pyruvate increased with increasing extracellular (medium) pH. The presence of 5 percent CO2 not only inhibited the acid efflux but also inhibited the short-term uptake of glucose. The CO2 effect was attributed to a lowering of the medium pH since bicarbonate alone either increased or did not inhibit efflux. 4) Valinomycin increased the levels of cellular lactate but not those of pyruvate by almost three-fold. Lactate efflux was stimulated while that of pyruvate was inhibited. The addition of 5 percent CO2 increased the cellular levels of both lactate and pyruvate, but unlike valinomycin decreased the acid efflux. Idoacetate inhibited the acid efflux by 50 percent suggesting that glycolysis is necessary for efflux.  相似文献   

19.
Streptococcus cremoris was grown in pH-regulated batch and continuous cultures with lactose as the energy source. During growth the magnitude and composition of the electrochemical proton gradient and the lactate concentration gradient were determined. The upper limit of the number of protons translocated with a lactate molecule during lactate excretion (the proton-lactate stoichiometry) was calculated from the magnitudes of the membrane potential, the transmembrane pH difference, and the lactate concentration gradient. In cells growing in continuous culture, a low lactate concentration gradient (an internal lactate concentration of 35 to 45 mM at an external lactate concentration of 25 mM) existed. The cell yield (Ymax lactose) increased with increasing growth pH. In batch culture at pH 6.34, a considerable lactate gradient (more than 60 mV) was present during the early stages of growth. As growth continued, the electrochemical proton gradient did not change significantly (from -100 to -110 mV), but the lactate gradient decreased gradually. The H+-lactate stoichiometry of the excretion process decreased from 1.5 to about 0.9. In nongrowing cells, the magnitude and composition of the electrochemical proton gradient was dependent on the external pH but not on the external lactate concentration (up to 50 mM). The magnitude of the lactate gradient was independent of the external pH but decreased greatly with increasing external lactate concentrations. At very low lactate concentrations, a lactate gradient of 100 mV existed, which decreased to about 40 mV at 50 mM external lactate. As a consequence, the proton-lactate stoichiometry decreased with increasing external concentrations of protons and lactate at pH 7.0 from 1 mM lactate to 1.1 at 50 mM lactate and at pH 5.5 from 1.4 at l mM lactate to 0.7 at 50 mM lactate. The data presented in this paper suggest that a decrease in external pH and an increase in external lactate concentration both result in lower proton-lactate stoichiometry values and therefore in a decrease of the generation of metabolic energy by the end product efflux process.  相似文献   

20.
Human lactate dehydrogenase isozymes, LDH-1 and LDH-5, were inactivated at 25 degrees C and pH 7.5 by N-alkylmaleimides of varying chain length, and by fluorescein mercuric acetate. Second-order rate constants for the inactivation of LDH-5 by N-alkylmaleimides increased with increasing chain length of the maleimide derivative while essentially no chain-length effect was observed in the inactivation of LDH-1. Both isozymes were effectively inactivated by low concentrations of fluorescein mercuric acetate, and in both cases saturation kinetics were observed. Dissociation constants obtained from double-reciprocal plotting methods indicated a twofold better binding of fluorescein mercuric acetate to LDH-1. Protection from fluorescein mercuric acetate by NAD was observed with both enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号