首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-one cold-tolerant, male sterile Brassica napus somatic hybrids were produced by protoplast fusion. The fusion partners were a coldsensitive, Ogura cytoplasmic male sterile cauliflower inbred (B. oleracea var. botrytis inbred NY7642A) and a cold-tolerant, fertile canola-type B. rapa cv. Candle. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Organellar analyses revealed a very strong bias for Brassica over Raphanus chloroplasts. Cold tolerance was confirmed by cold chamber studies and chloroplast DNA analyses. Good female fertility with 21.4 ± 3.1 seeds/pod was observed in the field using natural pollination vectors. Total seed yield was significantly greater for the atrazine-sensitive somatic hybrids produced in this study than for atrazine-resistant isolines.Abbreviations CMS cytoplasmic male sterility - IA iodoacetate - cpDNA chloroplast DNA  相似文献   

2.
Summary Broccoli (Brassica oleracea L. italica) hypocotyl protoplasts were fused with mesophyll protoplasts of two B. napus lines, one carrying the Ogura (ogu) cms cytoplasm, and the other carrying a hybrid cytoplasm consisting of ogu mitochondria combined with triazine-tolerance-conferring chloroplasts from ctr cytoplasm. Two male-sterile somatic hybrids were recovered from the fusion of broccoli protoplasts with those of ogu/ctr cybrid B. napus. The ogu mtDNAs and ctr cpDNAs were not altered in these hybrids. Four male-sterile plants were recovered from the somatic hybridization of broccoli with ogu cms B. napus. Three of these possessed mitochondrial genomes that appeared to have resulted from recombination between the ogu and normal B. oleracea (ole) mtDNAs, while the fourth possessed an unrearranged ogu mtDNA. All four of these plants had B. oleracea cpDNA, and none displayed the seedling chlorosis associated with ogu chloroplasts. Most of the plants recovered from these fusions had the chromosome number expected of B. oleracea + B. napus hybrids (2n = 56). The novel cytoplasms may prove to be useful for the molecular analysis of Brassica cms and for the production of hybrid Brassica.  相似文献   

3.
Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection. Received: June 1999 / Accepted: 29 July 1999  相似文献   

4.
Summary Chromosome and organelle segregation after the somatic hybridization of related species with different degrees of genetic divergence were studied by comparing the interspecific somatic hybrids Brassica oleracea (CC) (+) B. campestris (AA), B. napus (AACC) (+) B. oleracea (CC) B. napus (AACC) (+) B. nigra (BB) and B. napus (AACC) (+) B. juncea (AABB) with the intergeneric somatic hybrids B. napus (AACC) (+) Raphanus sativus (RR) and B. napus (AACC) (+) Eruca sativa (EE). Within each combination, some hybrids were found whose DNA content was equal to the sum of parental chromosomes, others had a relatively higher DNA content and in most of the cases, some had a relatively lower content. However, the frequency distribution in these three classes differed significantly between the combinations. A positive correlation between the frequency of hybrids with eliminated chromosomes and the genetic distance between the species in each combination was found. Furthermore, by combining species with different ploidy levels we found a significantly higher degree of chromosome elimination compared to combinations of species with the same ploidy level. In the B. napus (+) B. Nigra, B. napus (+) R. sativus and B. napus (+) E. sativa combinations chromosomes from the B, R and E genomes appeared to be preferentially sorted out, as indicated by the fact that some of the nuclear markers from these genomes were missing in 7–46% of the plants, whereas no plants were lacking B. napus nuclear markers. Fertile hybrids were found in all but the B. napus (+) R. sativus fusion combination; the latter hybrids were male sterile, but female fertile. Hybrids between the A and C genomes were more fertile than hybrids obtained between the distantly related AC and B, R or E genomes, respectively. Analysis of the chloroplast RFLP pattern revealed that chloroplasts in the B. oleracea (+) B. campestris hybrids segregated randomly. A slightly biased segregation, favouring B. napus chloroplasts, was found in the B. napus (+) B. oleracea combination, whereas B. napus chloroplasts were strongly selected for in the B. napus (+) B. juncea, B. napus (+) B. nigra, B. napus (+) R. sativus and B. napus (+) E. sativa somatic hybrids.  相似文献   

5.
Intraspecific somatic hybrids between 16 different diploid breeding lines of Solanum tuberosum L. were produced by PEG-induced fusion. Manually selected heterokaryons were cultured in a Millicells-CM using a post-fusion protoplast mixture. Plants were regenerated from calli derived from heterokaryons obtained from 10 out of 38 combinations of diploid lines. Of the tested putative somatic hybrids, 14.2% were diploid, 72.8% were tetraploid and 13% pentaploid. The DNA amplification pattern obtained with RAPD or semi-random primers confirmed that 6 fusion combinations were hybrids. In most cases, the morphological traits were intermediate to those of the diploid fusion partners. About 23.0% of the tested somatic hybrids showed variation in their morphology. Of the tested somatic hybrids, 78.0% flowered and 86.0% tuberized. The cytoplasm of 9 diploid lines and 6 somatic hybrid combinations was analysed. Two of the diploid lines had W/S chloroplasts and α or ε mitochondria; the remainder contained T chloroplasts and β mitochondria. All the analysed somatic hybrids carried T chloroplasts and β mitochondria.  相似文献   

6.
Summary Five somatic hybrids between Brassica campestris and B. oleracea were obtained. Molecular, morphological and cytological information all suggest that the resynthesized B. napus plants were hybrids. All five plants were diploid (2n=38) and had mainly bivalents at meiosis. Seedset was low after selfing but normal after crossing with B. napus. Molecular proof of the hybrid nature of these plants was obtained by hybridization of a rDNA repeat to total DNA. Analysis of chloroplast DNA restriction patterns revealed that all hybrids had chloroplasts identical to the B. oleracea parent. The analysis of mitochondrial DNA indicated that three hybrids had restriction patterns identical to those of B. campestris, and the other two had restriction patterns similar to those of B. oleracea. The 11.3 kb plasmid present in mitochondria of the B. campestris parent was also found in mitochondria of all five hybrids. This suggests that the plasmid from a B. campestris type of mitochondria was transferred into mitochondria of a B. oleracea type.  相似文献   

7.
Summary Fertile somatic hybrids between Brassica campestris and B. oleracea have been produced by protoplast fusion. Fusion products were identified by their intermediate protoplast morphology. Heterokaryons were isolated either with micropipettes using a micromanipulator or by flow sorting. About 2% of the obtained calli differentiated to shoots. Of the shoots obtained from manually selected heterokaryons, 100% were true hybrids as confirmed by isozyme analysis while 87% of the flow sorted ones showed a hybrid pattern. Ploidy level of the hybrid plants was determined by chromosome counting and relative DNA-content analysis. The sum of the chromosome number (38) from the two fusion partners were found in 30% of the hybrids; 9% had fewer and 61% had more chromosomes. Pollen viability and seed set varied with ploidy level. Compared to natural B. napus, a pollen viability of 52%–93% and a fertility of 1%–40% was found for the somatic hybrids with normal chromosome number. Restriction enzyme analysis of chloroplast-DNA showed that either B. campestris or B. oleracea chloroplasts were present in the somatic hybrid plants. Of 11 hybrid plants 5 had the campestris and 6 had the oleracea type (11 ratio).  相似文献   

8.
Black rot caused by the bacterium Xanthomonas campestris pv campestris is one of the most serious diseases of Brassica oleracea. Since sources of resistance to the disease within B. oleracea are insufficient and control means are limited, the development of resistant breeding lines is extremely desirable. Certain lines of B. napus contain very high resistance controlled by a dominant gene, but crossing the two species sexually is very difficult. Therefore, somatic hybrids were produced by protoplast fusion between rapid cycling B. oleracea and a B. napus line highly resistant to X. campestris pv campestris. Hybrid identity was confirmed by morphological studies, flow cytometric estimation of nuclear DNA content, and analysis of random amplified polymorphic DNA (RAPD). Inoculations with the pathogen identified four somatic hybrids with high resistance. The resistant hybrid plants were fertile and set seed when selfed or crossed reciprocally to the bridge line 15 (Quazi 1988). Direct crosses to B. oleracea were unsuccessful, but embryo rescue facilitated the production of a first-backcross generation. The BC1 plants were resistant to the pathogen. Progeny from the crosses to line 15 were all susceptible. Embryo rescue techniques were not obligatory for the development of a second-backcross generation, and several resistant BC2 plants were obtained.  相似文献   

9.
Novel Brassica napus somatic hybrids have been created through protoplast fusion of B. oleracea var. botrytis and B. rapa var. oleifera genotypes selected for high erucic acid (22:1) content in the seed oil. Fifty amphidiploids (aacc) and one putative hexaploid (aacccc) hybrid were recovered in one fusion experiment. Conversely, only one amphidiploid and numerous regenerates with higher DNA contents were produced in a similar fusion using a different B. rapa partner. Hybridity was confirmed by morphology, isozyme expression, flow cytometry, and DNA hybridization. Analysis of organellar DNA revealed a distinct bias toward the inheritance of chloroplasts from the B. rapa (aa) genome. All amphidiploids set self-pollinated seed. A erucic acid content as high as 57.4% was found in the seed oil of one regenerated plant. Fatty acid composition was stable in the R1 generation and was coupled with increased female fertility. Other novel agronomic characters in the hybrids recovered include large seed size, lodging resistance, and non-shattering seed pods.  相似文献   

10.
Summary An efficient procedure for obtaining somatic hybrids between B. oleracea and B. campestris has been developed. Hypocotyl protoplasts of B. oleracea were fused with mesophyll protoplasts from three different varieties of B. campestris by the polyethylene glycoldimethylsulfoxide method. The selection of somatic hybrids utilized the inactivation of B. oleracea protoplasts by iodoacetamide (IOA) and the low regeneration ability of B. campestris. The efficiency of recovery of somatic hybrids depended upon the IOA concentration, and when 15 mM IOA was used, 90% of the regenerated plants were found to be hybrid. The somatic hybrids were examined for i) leaf morphology, ii) leucine aminopeptidase (LAP) isozyme and iii) chromosome number. All the hybrids had intermediate leaf morphology and possessed LAP isozymes of both parental species. The chromosome analysis revealed a considerable variation in chromosome number of somatic hybrids, showing the occurrence of multiple fusion and chromosome loss during the culture. Some of the hybrids flowered and set seeds.  相似文献   

11.
Alloplasmic lines of cultivated Brassica species with B. oxyrrhina cytoplasm are male-sterile and suffer from severe chlorosis. We developed male-sterile lines corrected for chlorosis by fusing protoplasts of CMS B. juncea (AABB) with ’oxy’ cytoplasm and normal B. oleracea (CC). A large number of male-sterile AABBCC somatic hybrids with desirable organelle combinations, i.e. chloroplasts of B. oleracea and mitochondria with recombinant genomes, were recovered. While no recombination was observed in the chloroplast genome, the mitochondrial genome showed extensive recombination that resulted in the appearance of totally novel banding patterns in some of the hybrids. Hybrids with a parental-type mitochondrial genome as well as recombinant patterns close to either of the parental types were also obtained. Using AABBCC somatic hybrids as bridging material, we transferred the desirable organelle combinations to B. juncea (AABB), B. napus (AACC), and B. carinata (BBCC). Many of these lines are now at advanced stages of backcrossing and show stable inheritance of the CMS character and do not suffer from chlorosis. Received: 9 August 1999 / Accepted: 14 September 1999  相似文献   

12.
Rapid cycling Brassica species have great potential in plant genetic research because of their short life cycles and their minimal space requirements. Rapid cycling B. oleracea can be grown with up to six generations per year. Protoplast culture of this genotype can be applied for gene transfer by direct DNA uptake and by protoplast fusion. We here report on fast regeneration of flowering plants from protoplasts of rapid cycling B. oleracea. Regeneration frequencies of 27–65% were achieved with multiple shoots developing from individual calli. The regenerated plants were grown to maturity, and flowering and other morphological characteristics were monitored. The regenerants flowered within a similar time frame as plants grown from seeds. The ploidy level of regenerated and seed-grown plants was measured by flow cytometry. Many (20–45%) of the regenerants were tetraploid. Although only few seeds could be obtained from the tetraploids, large numbers of seeds with good germination were recovered from the diploid regenerants.Abbreviations MS-3,0 Murashige and Skoog medium containing 3% sucrose and no growth regulators - MES 1-morpholino-ethane sulfonate  相似文献   

13.
Summary Mitochondrial and chloroplast DNA were characterized in three different combinations of somatic hybrids produced between different species within Brassicaceae. The fusions were made between B. campestris and B. oleracea, B. napus and B. nigra and between B. napus and Eruca sativa. The combinations represent interspecific hybridizations, but the phylogenetic distance between the species used in each instance is different. Whereas the B. campestris (+) B. oleracea and the B. napus (+)B. nigra hybrids are both examples of intrageneric hybrids, B. campestris is more closely related to B. oleracea than B. napus is to B. nigra. The fusion of B. napus and E. sativa represents an intergeneric hybridization. Since hybrids were produced with reproducible and uniform fusion and culture methods, a comparison of chloroplast and mitochondrial segregation and mitochondrial DNA (mt-DNA) rearrangements could be made between the combinations. The segregation of both chloroplasts and mitochondria was biased in the B. napus (+)B. nigra and the B. napus (+)E. sativa combination. The nonrandom segregation of chloroplasts and mitochondria could be due to the different ploidy levels of the fusion partners and/or reflect differences in organelle replication rate. Furthermore, segregation of mitochondria was correlated to the differences in phylogenetic distance between the species used in the fusions. However, mitochondrial segregation, in contrast to chloroplast segregation, could in all combinations also have been affected by the cell type used as protoplast source in the fusions. All different chloroplast types could be established within each combination. Hybrids containing chloroplast from one parent together with mitochondria from the other parent were found in two of the combinations, although the majority of the hybrids had mt-DNA that was altered compared to the parental species. The rearranged mt-DNA found in most hybrids was an effect of the heteroplasmic state following protoplast fusion rather than of the tissue culture methods, since no mt-DNA rearrangements were found in B. napus plants regenerated from protoplast culture. The mtDNA restriction patterns of the hybrids with rearranged mt-DNA indicated that specific regions of the mt-DNA were involved in the rearrangements following protoplast fusion.  相似文献   

14.
Protoplasts were isolated from the young leaves of rapid cycling Brassica rapa and cotyledons and hypocotyls of 10-day-old Brassica juncea seedlings. Protoplasts were fused by 40% polyethylene glycol and cultured in modified K8p medium supplemented with 2.5 mg·l−1 isopentenyladenine (2ip), 0.5 mg·l−1 naphthaleneacetic acid, 1 mg·l−1 2,4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg·l−1 zeatin, 1% dimethyl sulfoxide, and 0.4 M mannitol as osmoticum. After 3 days of initial culture, 3 different culture methods were employed and evaluated. The highest plating efficiency (1.97%) was obtained with a semi-solid agarose embedding culture method. Both shoots and somatic embryos formed from protoplast culture-derived calli. The somatic embryos were derived from asymmetrically divided calli that developed progressively into deep-purple heart shapes as well as the early-torpedo and bipolar stages to finally form complete plantlets. Thirteen putative somatic hybrids were produced via somatic embryogenesis or organogenesis. Random amplified polymorphism DNA analysis was performed to identify somatic hybrids. Six regenerated plants had a chromosome number of 2n = 56 the same as the sum of B. juncea (2n = 36) and B. rapa (2n = 20) chromosomes; 2 plants had a chromosome number of 2n = 54. These regenerated plants exhibited morphology intermediate to those of their parents. The flowers of somatic hybrids exhibited a range of variation; some were normal, while others were abnormal. No pollen was produced from regenerated plants. Two plants had crinkled petal-like stamens.  相似文献   

15.
New types of cytoplasmic male sterility (CMS) in Brassica oleracea would be useful for F1 hybrid seed production. The `Anand' cytoplasm derives from the wild species B. tournefortii. Rapid cycling stocks of B. rapa and B. oleracea were used in cybridization experiments as donor and recipient of `Anand' (=`tour') CMS, respectively. Prior to fusion with PEG, donor protoplasts were inactivated with 30 krad γ-rays and recipient ones with 3 mM iodoacetate, respectively. No calli were obtained from the pre-treated protoplasts. The frequency of shoot regeneration was 21–43% in untreated B. oleracea controls, but only 0–0.5% in `Anand' B. rapa. Putative cybrids were regenerated from about 3% of the calli from fused protoplasts. Regenerated plants were analyzed for nuclear DNA content, plant and flower morphology, pollen production, female fertility, cold tolerance, and organelle composition. Eighty-one percent of the regenerated controls and 63% of fusion-derived plants were diploid. The rest showed DNA contents corresponding to 2x–4x, 4x, or higher ploidy levels, presumably due to somatic doubling in vitro and/or fusions in which the donor nucleus was not completely eliminated. Sixty-four percent of the cybrids had stamens and petals varying in size and shape and were male-sterile, with indehiscent anthers. Their phenotype was otherwise similar to that of B. oleracea. The remaining plants had normal flowers and were male-fertile. Data from crosses with fertile pollinators indicated good female fertility in some of the sterile lines, both after hand and insect pollinations in cages. Mitochondrial (mt) segregation in the cybrids was slightly biased towards `Anand' mitochondria, and the presence of `Anand' mtDNA fragments was strongly associated with male sterility. Evidence of mtDNA rearrangements was obtained in some cybrids. Segregation of chloroplasts was slightly biased towards B. oleracea. The presence of `Anand' chloroplasts with a B. oleracea nucleus did not result in cold temperature chlorosis, as seen in `Ogura' CMS plants. Received: 22 February 1996 / Accepted: 10 May 1996  相似文献   

16.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

17.
Publicly available genomic tools help researchers integrate information and make new discoveries. In this paper, we describe the development of immortal mapping populations of rapid cycling, self-compatible lines, molecular markers, and linkage maps for Brassica rapa and B. oleracea and make the data and germplasm available to the Brassica research community. The B. rapa population consists of 160 recombinant inbred (RI) lines derived from the cross of highly inbred lines of rapid cycling and yellow sarson B. rapa. The B. oleracea population consists of 155 double haploid (DH) lines derived from an F1 cross between two DH lines, rapid cycling and broccoli. A total of 120 RFLP probes, 146 SSR markers, and one phenotypic trait (flower color) were used to construct genetic linkage maps for both species. The B. rapa map consists of 224 molecular markers distributed along 10 linkage groups (A1–A10) with a total distance of 1125.3 cM and a marker density of 5.7 cM/marker. The B. oleracea genetic map consists of 279 molecular markers and one phenotypic marker distributed along nine linkage groups (C1–C9) with a total distance of 891.4 cM and a marker density of 3.2 cM/marker. A syntenic analysis with Arabidopsis thaliana identified collinear genomic blocks that are in agreement with previous studies, reinforcing the idea of conserved chromosomal regions across the Brassicaceae.  相似文献   

18.
Brassica rapa (AA) has been used to widen the genetic basis of B. napus (AACC), which is a new but important oilseed crop worldwide. In the present study, we have proposed a strategy to develop new type B. napus carrying genomic components of B. rapa by crossing B. rapa with hexaploid (AACCCC) derived from B. napus and B. oleracea (CC). The hexaploid exhibited large flowers and high frequency of normal chromosome segregation, resulting in good seed set (average of 4.48 and 12.53 seeds per pod by self and open pollination, respectively) and high pollen fertility (average of 87.05 %). It was easy to develop new type B. napus by crossing the hexaploid with 142 lines of B. rapa from three ecotype groups, with the average crossability of 9.24 seeds per pod. The genetic variation of new type B. napus was diverse from that of current B. napus, especially in the A subgenome, revealed by genome-specific simple sequence repeat markers. Our data suggest that the strategy proposed here is a large-scale and highly efficient method to introgress genomic components of B. rapa into B. napus.  相似文献   

19.
Somatic hybrids between the zinc hyperaccumulator Thlaspi caerulescens and Brassica napus were produced by electrofusion of protoplasts isolated from each species. Optimization of electrofusion parameters yielded interspecies heteroplasmic fusion rates of up to 13%. Hybrids were selected by screening the growing calli for Zn tolerance. In addition, a second novel selection technique was developed based on the observation that a high proportion of hybrid microcalli grown in liquid media did not adhere to the wall of the culture vessel, while microcalli derived from parental cells did. Seventeen from a total of 64 regenerated plants were conclusively verified as hybrids by AFLP DNA analysis. The hybrid plants were grown in soil for up to 4 months, and at least five flowered. Several of these hybrids survived when grown on high-zinc media.These hybridsaccumulated levels of zinc and cadmium that would have been toxic for B. napus. The data indicate that transfer of the trait for metal hyperaccumulation in plants is possible through somatic hybridization. Received: 1 December 1998 / Accepted: 30 January 1999  相似文献   

20.
Thirty resynthesized Brassica napus lines with defined S-allele constitution and the ancestral B. oleracea and B. campestris lines were used for the analysis of S- locus glycoproteins (SLGs). The aim of this study was to investigate (1) whether the S-specific glycoproteins of the diploid ancestor lines were also expressed in the amphidiploid hybrids and (2) whether the occurrence of SLG bands was correlated with the activity of the respective S-alleles, which had been tested by means of diallele pollination tests in a previous study. Stigma proteins were separated by isoelectric focusing (IEF)-gel electrophoresis, and glycoprotein bands were identified by Western blotting and Con-A/peroxidase reaction. The SLG bands of the B. campestris parent could be detected in all 30 resynthesized B. napus lines. In contrast, B. oleracea SLG bands could only be detected in 12 resynthesized B. napus lines. Only B. napus lines which carried the dominant B. oleracea S-alleles S8 and S29 showed respective SLG bands in all cases. Nine B. napus lines showed only glycoprotein bands of the B. campestris parent, although the biological functioning of the B. oleracea S-alleles was demonstrated by test-pollinations. New SLG bands different from those of the B. oleracea and B. campestris parents occurred in 16 B. napus lines. The expression level of the SLGs in B. napus was not correlated with the self-incompatibility phenotype, not only in the case of recessive S-alleles (S2, S15), but also for dominant alleles (e.g. S14, S32, S45). Received: 22 January 1999 / Accepted: 30 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号