首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with prostate cancer (PCa) will eventually progress to castrate-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) treatment. Prostate-specific antigen (PSA)/lo cells which harbor self-renewing long-term tumor-propagating cells that can be enriched using ALDH+CD44+α2β1+ and can initiate tumor development may represent a critical source of CRPC cells. Our purpose was to find a peptide that specifically targets PSA/lo PCa cells to retard the development of CRPC. PSA+ and PSA/lo cells were successfully separated from LNCaP xenograft tumors after prostate- PSAP-GFP vector infection and FACS. A variety of PSA/lo cells specifically targeting peptide (named as “TAP1” targeted affinity peptide 1) was identified by using phage display library screening. The highest binding rate in TAP1 binding cell subpopulations are identified to be among ALDH+CD44+CXCR4+CD24+ cells. TAP1 significantly inhibited PCa growth both in vitro and in vivo. TAP1 significantly improved the anti-proliferation effect of the anti-androgens (Charcoal dextran-stripped serum (CDSS)+Bicalutamide, Enzalutamide) and chemotherapeutic agents (Abiraterone, Docetaxel, Etoposide) in vitro. TAP1 treatment shortens the length of telomeres in ALDH+CD44+CXCR4+CD24+ cells and significantly reduces the expression of Homeobox B9 (HOXB9) and TGF-β2. In conclusion, PSA/lo PCa cell-specific targeting peptide (TAP1) that suppressed PCa cell growth both in vitro and in vivo and improved the drug sensitivities of anti-androgens and chemotherapeutic agents at least through shortening the length of telomere and reducing the expression of HOXB9 and TGF-β2. Therapeutic peptides that specifically target prostate cancer stem cell might be a very valuable and promising approach to overcome chemoresistance and prevent recurrence in patients with PCa.  相似文献   

2.
Lymph node metastasis (LNM) in many solid cancers is a well-known prognostic factor; however, it has been debated whether regional LNM simply reflects tumor aggressiveness or is a source for further tumor dissemination. Similarly, the metastatic process in head and neck cancer (HNC) has not been fully evaluated. Thus, we aimed to investigate the relative significance of LNM in metastatic cascade of HNC using functional imaging of HNC patients and molecular imaging in in vivo models. First, we analyzed 18Fluorodeoxyglucose positron emission tomography (PET) parameters of 117 patients with oral cancer. The primary tumor and nodal PET parameters were measured separately, and survival analyses were conducted on the basis of clinical and PET variables to identify significant prognostic factors. In multivariate analyses, we found that only the metastatic node PET values were significant. Next, we compared the relative frequency of lung metastasis in primary ear tumors versus lymph node (LN) tumors, and we tested the rate of lung metastasis in another animal model, in which each animal had both primary and LN tumors that were expressing different colors. As a result, LN tumors showed higher frequencies of lung metastasis compared to orthotopic primary tumors. In color-matched comparisons, the relative contribution to lung metastasis was higher in LN tumors than in primary tumors, although both primary and LN tumors caused lung metastases. In summary, tumors growing in the LN microenvironment spread to systemic sites more commonly than primary tumors in HNC, suggesting that the adequate management of LNM can reduce further systemic metastasis.  相似文献   

3.
4.
Allelic imbalance and microsatellite instability in operating materials from 78 patients with gastric cancer was studied. Microsatellite polymorphism for 17p13.1 (TP53), 1p36.1 (RUNX3), 16p22 (CDH1), and MH (BAT26) was determined in tumor and adjacent (morphologically normal) tissues of gastric mucosa. The allelic imbalance of 17p13.3 (p = 0.0176) and 16p22 (p = 0.023) loci by two and more loci in a single sample (p = 0.0176), as well as microsatellite instability (p = 0.047), is observed significantly more frequently in intestinal types of tumors than in tumors of a diffuse type. During the comparison of clinical groups with different degrees of tumor-cell differentiation, it was demonstrated that allelic imbalance by 16p22 locus (p = 0.041) and by two and more loci in a single sample (p = 0.0057) is observed more frequently in highly differentiated or moderately differentiated tumors. We did not detect significant differences in the groups of patients with metastases (or without them) in regional lymphatic nodes with different localizations and at different stages of the tumor process.  相似文献   

5.
Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.  相似文献   

6.
Development of distant metastasis is the main cause of deaths in prostate cancer (PCa) patients. Understanding the mechanism of PCa metastasis is of utmost importance to improve its prognosis. The role of exosomal long noncoding RNA (lncRNA) has been reported not yet fully understood in the metastasis of PCa. Here, we discovered an exosomal lncRNA HOXD-AS1 is upregulated in castration resistant prostate cancer (CRPC) cell line derived exosomes and serum exosomes from metastatic PCa patients, which correlated with its tissue expression. Further investigation confirmed exosomal HOXD-AS1 promotes prostate cancer cell metastasis in vitro and in vivo by inducing metastasis associated phenotype. Mechanistically exosomal HOXD-AS1 was internalized directly by PCa cells, acting as competing endogenous RNA (ceRNA) to modulate the miR-361-5p/FOXM1 axis, therefore promoting PCa metastasis. In addition, we found that serum exosomal HOXD-AS1 was upregulated in metastatic PCa patients, especially those with high volume disease. And it is correlated closely with Gleason Score, distant and nodal metastasis, Prostatic specific antigen (PSA) recurrence free survival, and progression free survival (PFS). This sheds a new insight into the regulation of PCa distant metastasis by exosomal HOXD-AS1 mediated miR-361-5p/FOXM1 axis, and provided a promising liquid biopsy biomarker to guide the detection and treatment of metastatic PCa.Subject terms: Bone metastases, Prostate cancer  相似文献   

7.
Most advanced prostate cancer (PCa) patients initially respond well to androgen deprivation therapy, but almost all eventually develop castration-resistant prostate cancer (CRPC). Early studies indicated the bipolar androgen therapy via a cycling of high dose and low dose of androgen to suppress PCa growth might be effective in a select patient population. The detailed mechanisms, however, remain unclear. Here we found the capacity of natural killer (NK) cells to suppress the CRPC cells could be suppressed by a high dose of dihydrotestosterone (DHT). Mechanism dissection indicates that transactivated AR can increase circularRNA-FKBP5 (circFKBP5) expression, which could sponge/inhibit miR-513a-5p that suppresses the PD-L1 expression via direct binding to its 3ʹUTR to negatively impact immune surveillance from NK cells. Preclinical data from in vitro cell lines and an in vivo mouse model indicate that targeting PD-L1 with sh-RNA or anti-PD-L1 antibody can enhance the high dose DHT effect to better suppress CRPC cell growth. These findings may help us to develop novel therapies via combination of high dose androgen with PD-1/PD-L1 checkpoint inhibitors to better suppress CRPC progression.Subject terms: Cell signalling, Prostate cancer  相似文献   

8.
Patients with endometrial endometrioid carcinoma (EEC) that present with advanced primary disease and develop recurrences have a poor outcome. The phenotype of EEC metastases and recurrences is poorly studied. We evaluated the morphological features and ER-alpha/PRA/p53 immunohistochemical expression of a sample of 45 EEC metastases compared to matched primary tumors. Additionally, we studied methylation levels of ER-alpha/PRA gene promoters. The distribution of histological FIGO grade was significantly different in metastases, which disclosed higher grade than primary tumors (p = 0.005). Mitotic index was significantly lower in metastases compared to matched primary tumors (p<0.001). ER-alpha (p = 0.002) and PRA (p<0.001) median H-scores were significantly lower in metastases than in matched primary EECs, but there was no significant difference concerning p53 expression (p = 0.056). ER-alpha/PRA expression differences did not correlate with differences in metastases morphology. ER-alpha/PRA gene promoter levels were globally low (range: 0% to 11.9%). One case showed higher ER-alpha gene promoter methylation in metastasis compared to matched EEC primary tumor. Regarding PRA, there was a significant higher frequency of its promotor methylation in metastases compared to primary tumors (51.6% vs. 22.7%, p = 0.022). In conclusion, EEC metastatic disease displays phenotypic changes along with ER-alpha and PRA decreased expression compared to primary tumors. ER-alpha and PRA gene promoter methylation seems to play a limited role in the etiology of these alterations. PR expression assessment for hormonal treatment decision of patients with advanced tumors, may be more adequate in metastases than in EEC primary tumors.  相似文献   

9.

Purpose

Prostate cancer (PCa) is characterized by deregulated expression of several tumor suppressor or oncogenic miRNAs. The objective of this study was the identification and characterization of miR-let-7c as a potential tumor suppressor in PCa.

Experimental Design

Levels of expression of miR-let-7c were examined in human PCa cell lines and tissues using qRT-PCR and in situ hybridization. Let-7c was overexpressed or suppressed to assess the effects on the growth of human PCa cell lines. Lentiviral-mediated re-expression of let-7c was utilized to assess the effects on human PCa xenografts.

Results

We identified miR-let-7c as a potential tumor suppressor in PCa. Expression of let-7c is downregulated in castration-resistant prostate cancer (CRPC) cells. Overexpression of let-7c decreased while downregulation of let-7c increased cell proliferation, clonogenicity and anchorage-independent growth of PCa cells in vitro. Suppression of let-7c expression enhanced the ability of androgen-sensitive PCa cells to grow in androgen-deprived conditions in vitro. Reconstitution of Let-7c by lentiviral-mediated intratumoral delivery significantly reduced tumor burden in xenografts of human PCa cells. Furthermore, let-7c expression is downregulated in clinical PCa specimens compared to their matched benign tissues, while the expression of Lin28, a master regulator of let-7 miRNA processing, is upregulated in clinical PCa specimens.

Conclusions

These results demonstrate that microRNA let-7c is downregulated in PCa and functions as a tumor suppressor, and is a potential therapeutic target for PCa.  相似文献   

10.
Skeletal metastases represent a frequent complication in patients with advanced prostate cancer (PCa) and often require bisphosphonate treatment to limit skeletal‐related events. Metastasized PCa cells disturb bone remodeling. Since the WNT signaling pathway regulates bone remodeling and has been implicated in tumor progression and osteomimicry, we analyzed the WNT profile of primary PCa tissues and PCa cell lines and assessed its regulation by bisphosphonates. Prostate tissue (n = 18) was obtained from patients with benign prostate hyperplasia (BPH) and PCa patients with different disease stages. Serum samples were collected from 62 patients. Skeletal metastases were present in 17 patients of whom 6 had been treated with zoledronic acid. The WNT profile and its regulation by bisphoshonates were analyzed in tissue RNA extracts and serum samples as well as in osteotropic (PC3) and non‐osteotropic (DU145, LNCaP) PCa cell lines. Several members of the WNT pathway, including WNT5A, FZD5, and DKK1 were highly up‐regulated in PCa tissue from patients with advanced PCa. Interestingly, osteotropic cells showed a distinct WNT profile compared to non‐osteotropic cells. While WNT5A, FZD5, and DKK1 were highly expressed in PC3 cells, WNT1 and SFRP1 mRNA levels were higher in DU145 cells. Moreover, zoledronic acid down‐regulated mRNA levels of WNT5A (?34%), FZD5 (?60%), and DKK1 (?46%) in PC3 cells. Interestingly, patients with skeletal metastases who received zoledronic acid had twofold higher DKK1 serum levels compared to bisphosphonate‐naive patients. The WNT signaling pathway is up‐regulated in advanced PCa, differentially expressed in osteotropic versus non‐osteotropic cells, and is regulated by zoledronic acid. J. Cell. Biochem. 112: 1593–1600, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
Intratumor heterogeneity is a key driver for local relapse and treatment failure. Thus, using multifocal prostate cancer as a model to investigate tumor inter-clonal relationships and tumor evolution could aid in our understanding of drug resistance. Previous studies discovered genomic alterations by comparing hormone-sensitive prostate cancer (HSPC) with castration-resistant prostate cancer (CRPC) in large cohorts. However, most studies did not sequentially sample tumors from the same patient. In our study, we performed whole-exome sequencing (WES) on 14 specimens from five locally relapsed patients before and after androgen-deprivation therapy. We described the landscape of genomic alterations before and after treatment and identified critical driver events that could have contributed to the evolution of CRPC. In addition to confirming known cancer genes such as TP53 and CDK12, we also identified new candidate genes that may play a role in the progression of prostate cancer, including MYO15A, CHD6 and LZTR1. At copy number alteration (CNA) level, gain of 8q24.13-8q24.3 was observed in 60% of patients and was the most commonly altered locus in both HSPC and CRPC tumors. Finally, utilizing phylogenetic reconstruction, we explored the clonal progression pattern from HSPC to CRPC in each patient. Our findings highlight the complex and heterogeneous mechanisms underlying the development of drug resistance, and underscore the potential value of monitoring tumor clonal architectures during disease progression in a clinical setting.  相似文献   

12.

Background

KRAS mutations in colorectal cancer primary tumors predict resistance to anti-Epidermal Growth Factor Receptor (EGFR) monoclonal antibody therapy in patients with metastatic colorectal cancer, and thus represent a true indicator of EGFR pathway activation status.

Methodology/Principal Findings

KRAS mutations were retrospectively studied using polymerase chain reactions and subsequent sequencing of codons 12 and 13 (exon 2) in 110 patients with metastatic colorectal tumors. These studies were performed using tissue samples from both the primary tumor and their related metastases (93 liver, 84%; 17 lung, 16%). All patients received adjuvant 5-Fluorouracil-based polychemotherapy after resection of metastases. None received anti-EGFR therapy. Mutations in KRAS were observed in 37 (34%) of primary tumors and in 40 (36%) of related metastases, yielding a 94% level of concordance (kappa index 0.86). Patients with primary tumors possessing KRAS mutations had a shorter disease-free survival period after metastasis resection (12.0 vs 18.0 months; P = 0.035) than those who did not. A higher percentage of KRAS mutations was detected in primary tumors of patiens with lung metastases than in patients with liver metastases (59% vs 32%; p = 0.054). To further evaluate this finding we analyzed 120 additional patients with unresectable metastatic colorectal cancer who previously had their primary tumors evaluated for KRAS mutational status for clinical purposes. Separately, the analysis of these 120 patients showed a tendency towards a higher degree of KRAS mutations in primary tumors of patients with lung metastases, although it did not reach statistical significance. Taken together the group of 230 patients showed that KRAS was mutated significantly more often in the primary tumors of patients with lung metastases (57% vs 35%; P = 0.006).

Conclusions/Significance

Our results suggest a role for KRAS mutations in the propensity of primary colorectal tumors to metastasize to the lung.  相似文献   

13.
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.  相似文献   

14.
Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR.  相似文献   

15.
Background: The aim of this study was to analyze the properties of the immune cell microenvironment of regional lymph nodes (LNs) positive for lung cancer. Methods: Twenty-four patients operated on for stages T1 and T2 of the NSCLC, were enrolled in the study. Peripheral blood and LN tissue were obtained from different lymph node sites and levels. As a control, LN tissue was taken from patients diagnosed with emphysema or pneumothorax. The cells from randomly chosen LN were tested by multi-color flow cytometry. Separate portions of LN were snap-frozen and examined for the presence of cytokeratin positive cells (CK). Propensity for apoptosis, level of TCR zeta chain expression of T cells and the number and maturation status of dendritic cells were confronted with the presence of CK-positive cells. Results: The presence of metastases correlated with the downregulation of TCR zeta, especially CD8(+) T cells. The most striking feature was the reduction in the number of myeloid CD11c(+) dendritic cells in the LN of patients with LN metastases. This could be a reflection of the immunodeficient state observed in lung cancer patients. Even in the absence of metastases in the regional LN, the same type of changes in the LN microenvironment were observed in those LN located nearer the primary tumor. Conclusions: The preliminary results of this study suggest that this approach may be helpful as an independent tumor staging factor. It is also worth noting that part of the staging process could also be based on features describing the immune cells in the peripheral blood.  相似文献   

16.
17.
Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.  相似文献   

18.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号