首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides, sialic acid-bearing glycosphingolipids, are highly enriched in the vertebrate nervous system. Anti-ganglioside antibodies are associated with various human neuropathies, although the pathogenicity of these antibodies remains unproven. Testing the pathogenic role of anti-ganglioside antibodies will be facilitated by developing high-affinity IgG-class complement-fixing monoclonal anti-bodies against major brain gangliosides, a goal that has been difficult to achieve. In this study, mice lacking complex gangliosides were used as immune-naive hosts to raise anti-ganglioside antibodies. Wild-type mice and knockout mice with a disrupted gene for GM2/GD2 synthase (UDP-N-acetyl-D-galactosamine : GM3/GD3 N-acetyl-D-glactosaminyltransferase) were immunized with GD1a conjugated to keyhole limpet hemocyanin. The knockout mice produced a vigorous anti-GD1a IgG response, whereas wildtype littermates failed to do so. Fusion of spleen cells from an immunized knockout mouse with myeloma cells yielded numerous IgG anti-GD1a antibody-producing colonies. Ganglioside binding studies revealed two specificity classes; one colony representing each class was cloned and characterized. High-affinity monoclonal antibody was produced by each hybridoma : an IgG1 that bound nearly exclusively to GD1a and an IgG2b that bound GD1a, GT1b, and GT1aalpha. Both antibodies readily readily detected gangliosides via ELISA, TLC immune overlay, immunohistochemistry, and immunocytochemistry. In contrast to prior reports using anti-GD1a and anti-GT1b IgM class monoclonal antibodies, the new antibodies bound avidly to granule neurons in brain tissue sections and cell cultures. Mice lacking complex gangliosides are improved hosts for raising high-affinity, high-titer anti-ganglioside IgG antibodies for probing for the distribution and physiology of gangliosides and the pathophysiology of anti-ganglioside antibodies.  相似文献   

2.
Mice genetically engineered to lack complex gangliosides are improved hosts for raising antibodies against those gangliosides. We report the generation and characterization of nine immunoglobulin G (IgG)-class monoclonal antibodies (mAbs) raised against the four major brain gangliosides in mammals. These include (designated as ganglioside specificity-IgG subclass) two anti-GM1 mAbs (GM1-1, GM1-2b), three anti-GD1a mAbs (GD1a-1, GD1a-2a, GD1a-2b), one anti-GD1b mAb (GD1b-1), and three anti-GT1b mAbs (GT1b-1, GT1b-2a, GT1b-2b). Each mAb demonstrated high specificity, with little or no cross-reactivity with other major brain gangliosides. Enzyme-linked immunosorbent assay (ELISA) screening against 14 closely related synthetic and purified gangliosides confirmed the high specificity, with no significant cross-reactivity except that of the anti-GD1a mAbs for the closely related minor ganglioside GT1a alpha. All of the mAbs were useful for ELISA, TLC immunooverlay, and immunocytochemistry. Neural cells from wild-type rats and mice were immunostained to differing levels with the anti-ganglioside antibodies, whereas neural cells from mice engineered to lack complex gangliosides (lacking the ganglioside-specific biosynthetic enzyme UDP-GalNAc:GM3/GD3 N-acetylgalactosaminyltransferase) remained unstained, demonstrating that most of the mAbs react only with gangliosides and not with related structures on glycoproteins. These mAbs may provide useful tools for delineation of the expression and function of the major brain gangliosides and for probing the pathology of anti-ganglioside autoimmune diseases.  相似文献   

3.
Summary The immunogenicity of the disialoganglioside, GD3, a melanoma-tumor-associated antigen, has been evaluated in non-human primates. Sera from four chimpanzees and two monkeys were evaluated for anti-GD3 antibody activity by solid-phase radioimmunoassay using GD3 and control gangliosides as targets. Serum from one monkey, immunized with cells from a melanoma cell line, was strongly reactive with GD3, having a titer of >2500. In contrast, serum from this animal was non-reactive with several other gangliosides including the structurally similar GM3. Anti-GD3 reactivity was also demonstrable, albeit in low titer, in the sera of an additional monkey and a chimpanzee. Each of these animals had likewise been immunized using cells from melanoma cell lines. On the basis of these observations, suggestive of a primate anti-GD3 antibody response, we initiated a series of immunizations of chimpanzee using purified GD3 bound to Salmonella minnesota, R595. IgG reactive with melanoma cells in the cell-binding assay was first detected in sera collected after 4 immunizations and increased in titer against each reactive melanoma cell line during the immunizations. Reactivity of this serum with melanoma cell lines demonstrated a direct correlation with the expression of GD3 by the respective cell line. Anti-GD3 reactivity was evident in solid-phase radioimmunoassay against purified GD3 beginning with serum collected after 11 immunizations. By comparison with its binding to the control ganglioside panel, this serum demonstrated strong specificity for GD3 (titer=640) while having only marginal reactivity with GM3 (titer=40). Immune serum from this animal was also able specifically to block subsequent binding of a murine IgM anti-GD3 antibody (DMab7) to target GD3 in solid-phase radioimmunoassay. Together, these observations suggest that GD3, in the form of a purified molecule bound to a bacterial matrix or as part of the intact melanoma cell membrane, can be immunogenic in non-human primates, and is able to elicit an antibody response of appropriate specificity.Supported in part by grant CA32672 from the National Cancer Institute, Veterans Administration Program 821 and by the Yerkes Regional Primate Center, Atlanta, Georgia. The Yerkes Center is fully accredited by the American Association for Accreditation of Laboratory Animal Care  相似文献   

4.
We have recently reported that the disialoganglioside GD3 is found in cellular lipid extracts of T-cell acute lymphoblastic malignancies (T-ALL) but is not detectable by resorcinol staining in extracts of non-T acute lymphoblastic leukemia blasts (non-T-ALL). We have now extended this study to assess the detectability of GD3 in T-ALL vs non-T-ALL utilizing an anti-GD3 antibody, R24. Gangliosides isolated from T-ALL and non-T-ALL blasts by two different methods were separated by thin-layer chromatography and stained with anti-GD3 and a control antibody specific for GM3 and sialosylparagloboside (SPG). Anti-GD3 reactivity was observed in extracts from T-ALL cells in all cases, whereas GD3 was not detected in any of the non-T-ALL samples. The anti-GM3/SPG antibody stained GM3 in all of the leukemic samples analyzed as well as SPG in the non-T-ALL samples. Indirect immunofluorescence was used to assess the expression of GD3 at the surface of leukemic blasts. Fluorescence-activated cell sorting analysis with R24 showed that whereas T-ALL blasts were highly reactive with this antibody, non-T-ALL blasts were totally unreactive. In an analysis of a larger number of leukemia patients by fluorescence microscopy, 20 out of 28 samples with the T-ALL phenotype were positive for R24, whereas zero out of 11 non-T-ALL samples were reactive. These results confirm our earlier finding of the specificity of GD3 to the T-ALL subclass of childhood leukemias and furthermore suggest the potential value of anti-GD3 as an immunological tool for the diagnosis and therapy of T-cell ALL.  相似文献   

5.
Cell-surface gangliosides are presumed to play a role in cell growth and differentiation. With the use of monoclonal antibodies directed against GD3, a disialoganglioside expressed predominantly by cells of neuroectodermal origin, we have found that GD3 is expressed by a subpopulation of cells of the immune system including: 1) fetal thymocytes in subcortical regions and near vessels, 2) lymph node lymphocytes in interfollicular areas and near vessels, and 3) a small subset of T cells in the peripheral blood. Mouse monoclonal antibodies (two IgGs, one IgM, and F(ab')2 fragments) reacting with GD3 were found to stimulate proliferation of T cells derived from peripheral blood. Proliferation of T cells was observed even in cultures depleted of macrophages, suggesting that activation by anti-GD3 was not dependent on the presence of accessory cells. T cell proliferation was maximum between days 5 and 7 of stimulation and was preceded by expression of interleukin 2 receptors. No stimulation was observed with control antibodies of the identical isotype or with monoclonal antibodies recognizing the gangliosides GD2 or GM2. During stimulation by anti-GD3 monoclonal antibodies, there was an expansion of the GD3+ pool of T cells, but depletion of GD3+ T cells prior to stimulation abrogated the response. Proliferation induced by binding to GD3 could be augmented by exogenous interleukin 2 and phytohemagglutinin. Anti-CD3 (T3) monoclonal antibodies had little or no effect. These results demonstrate that binding to GD3 on the surface of T cells can elicit signals for T cell proliferation.  相似文献   

6.
Most epithelial sheets emerge during embryogenesis by a branching and growth of the epithelium. The surrounding mesenchyme is crucial for this process. We report that branching morphogenesis and the formation of a new epithelium from the mesenchyme in the embryonic kidney can be blocked by a monoclonal antibody reacting with a surface glycolipid, disialoganglioside GD3. In contrast, a more than 10-fold excess of antibodies to adhesive glycoproteins (N-CAM, L-CAM, fibronectin) fails to inhibit morphogenesis. Although the anti-GD3 antibody affected epithelial development, the disialoganglioside GD3 was expressed not in the epithelium, but in the mesenchyme surrounding the developing epithelia. The data raise the intriguing possibility that the anti-GD3 antibody inhibits epithelial development by interfering with epithelial-mesenchymal interactions.  相似文献   

7.
Ganglioside GD3, which is one of the major gangliosides expressed on the cell surface human tumors of neuroectodermal origin, has been studied as a target molecule for passive immunotherapy. We established ten kinds of anti-GD3 monoclonal antibodies (mAb) of the mouse IgG3 subclass by immunization with purified GD3 and melanoma cells. One of the established mAb, KM641, showed major reactivity with GD3 and minor reactivity with GQ1b out of 11 common gangliosides in an enzymelinked immunosorbent assay. Immunostaining of gangliosides, separated on thin-layer chromatography plates, using KM641 revealed that most of the melanoma cell lines contained immunoreactive GD3 and GD3-lactone at a high level, but only the adrenal gland and the urinary bladder out of 21 human normal tissues had immunoreactive GD3. In immunofluorescence, KM641 bound to a variety of living tumor cell lines especially melanoma cells, including some cell lines to which another anti-GD3 mAb R24, established previously, failed to bind. High-affinity binding of KM641 to a tumor cell line was quantified by Scatchard analysis (K d = 1.9×10–8 M). KM641 exerted tumor-killing activity in the presence of effector cells or complement against melanoma cells expressing GD3 at a high level. Not only natural killer cells but also polymorphonuclear cells were effective as the effector cells in antibody-dependent cellular cytotoxicity. Intravenous injection of KM641 markedly suppressed the tumor growth of a slightly positive cell line, C24.22 (7.2×105 binding sites/cell), as well as a very GD3-positive cell line, G361 (1.9×107 binding sites/cell), inoculated intradermally in nude mice. KM641, characterized by a high binding affinity for GD3, has the potential to be a useful agent for passive immunotherapy of human cancer.  相似文献   

8.
GD3-replica peptides were obtained from a phage peptide library and an anti-GD3 monoclonal antibody (Mab) (4F6), and anti-GD3 Mabs were generated by immunizing a peptide GD3P4. A Mab, 3D2 was found to recognize GD3 by immunohistochemical approaches. Amino acid analysis of heavy and light chain variable regions of 4F6 and 3D2 showed that the respective chains had the same length, and only a few different amino acid substitutions were found. The present data indicate that the immunogenic GD3P4 is processed in a certain size and exposed on the antigen-presenting cells with a molecular shape quite similar to that of the GD3 epitope in 4F6.  相似文献   

9.
Owing to their exposure on the cell surface and the possibility of being directly recognized with specific antibodies, glycosphingolipids have aroused great interest in the field of stem cell biology. In the search for specific markers of the differentiation of human bone marrow mesenchymal stem cells (hBMSCs) toward osteoblasts, we studied their glycosphingolipid pattern, with particular attention to gangliosides. After lipid extraction and fractionation, gangliosides, metabolically 3H-labeled in the sphingosine moiety, were separated by high-performance TLC and chemically characterized by MALDI MS. Upon induction of osteogenic differentiation, a 3-fold increase of ganglioside GD1a was observed. Therefore, the hypothesis of GD1a involvement in hBMSCs commitment toward the osteogenic phenotype was tested by comparison of the osteogenic propensity of GD1a-highly expressing versus GD1a-low expressing hBMSCs and direct addition of GD1a in the differentiation medium. It was found that either the high expression of GD1a in hBMSCs or the addition of GD1a in the differentiation medium favored osteogenesis, providing a remarkable increase of alkaline phosphatase. It was also observed that ganglioside GD2, although detectable in hBMSCs by immunohistochemistry with an anti-GD2 antibody, could not be recognized by chemical analysis, likely reflecting a case, not uncommon, of molecular mimicry.  相似文献   

10.
The frequently occurring alteration of ganglioside expression in tumor cells has been implicated to play a role in the uncontrolled growth of these cells; antibodies to such gangliosides might affect tumor cell growth. We have studied the effect of IgM monoclonal antibodies to two glioma-associated gangliosides, GD3 and GM2, on cell proliferation of four human glioma cell lines and one renal tumor cell line. Of the two anti-ganglioside antibodies tested, only the anti-GD3 antibody resulted in a significant (p<0.005) inhibition of cell proliferation as measured by thymidine incorporation and Brd-U labeling, after 24[emsp4 ]h incubation. The effect was not dependent on any serum factor and no increased cell death was observed. All cell lines contained higher or similar amounts of GM2 than GD3, and both antigens were shown to be expressed on the cell surface and accessible to antibodies. The selective effect of anti-GD3 antibodies as contrasted to the inactivity of anti-GM2 antibodies suggests a possible role for ganglioside GD3 in tumor cell proliferation.  相似文献   

11.
Ganglioside GD3, which is one of the major gangliosides expressed on the cell surface of human tumors of neuroectodermal origin has been focused on as a target molecule for passive immunotherapy. We have cloned the cDNA encoding the immunoglobulin light and heavy chains of an anti-GD3 monoclonal antibody KM641 (murine IgG3, ), and constructed the chimeric genes by linking the cDNA fragments of the murine light and heavy variable regions to cDNA fragments of the human and 1 constant regions, respectively. The transfer of these cDNA constructs into SP2/0 mouse myeloma cells resulted in the production of the chimeric antibody, designated KM871, that retained specific binding activity to GD3. Indirect immunofluorescence revealed the same staining pattern for chimeric KM871 and the mouse counterpart KM641 on GD3-expressing melanoma cells. When human serum and human peripheral blood mononuclear cells were used as effectors in complement-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity respectively, the chimeric KM871 was more effective in killing GD3-expressing tumor cells than was the mouse counterpart KM641. Intravenous injection of chimeric KM871 markedly suppressed tumor growth in nude mice. The chimeric KM871, having enhanced antitumor activities and less immunogenicity than the mouse counterpart, would be a useful agent for passive immunotherapy of human cancer.  相似文献   

12.
A mouse monoclonal antibody directed against one of the major human brain gangliosides, GD1b, has been produced. The antibody binds specifically to the carbohydrate structure of GD1b as it does not react with structurally related gangliosides like GM1, GD2, GT1b or Fuc-GM1, or any other ganglioside of human brain. The results further indicate that terminal galactose as well as the disialosyl group linked to the inner galactose moiety are involved in binding to the antibody.  相似文献   

13.
14.
GD3, a ganglioside of the lactosyl series, is prevalent in rat retina neuronal cells. We studied here whether rat retina neurons synthesize their own surface GD3 or if they acquire it from Müller glia cells. We analyzed the activity of GD3 synthase and the in vivo labeling of gangliosides from N-[3H]acetylmannosamine in adult rat retinas after selective destruction of Müller glia cells with the gliotoxic alpha-D,L-aminoadipate (AAA). Immunostaining of rat retina sections and western blot analysis with an antivimentin antibody confirmed the gliotoxic effect of AAA. Neither GD3 synthase activity nor the in vivo labeling of GD3 and other gangliosides was significantly affected by AAA, indicating that neuronal cells synthesize their own GD3. We next analyzed the regulation of the expression of GD3 by these neurons in culture. About 80% of freshly dissociated cells from retina of 4-day-old rats (R4) immunoexpress surface GD3. After 3 days in dispersed cell culture conditions, GD3 expression was under the limit of detection in 80% of neuronal cells, indicating a failure of these cells to maintain the expression of surface GD3 in these experimental conditions. Most flat Müller glia-derived cells present in these cultures were GD3 positive. Surface GD3 was detected in approximately 60% of neuronal cells dissociated from R4 tissue that was developed in vitro as an organ culture for 3 days. Likewise, approximately 50% of neurites that had grown out from R4 retinal explants within 3 days in culture and whose neuronal character was indicated by immunoexpression of growth-associated protein GAP-43 were GD3 positive. These findings suggest that the tissue organization and/or specific interactions modulate GD3 expression in neuronal cells. Under dispersed-cell culture conditions, c-pathway gangliosides (GQ1c and GT1c), which are built up from the sialylation of GD3 and later completion of the oligosaccharide backbone, were detected in approximately 60% of neuronal cells, suggesting a maintenance of production of GD3 as an intermediate for gangliotetraosyl gangliosides.  相似文献   

15.
Neuronal and glial cells organizing the central nervous system (CNS) are generated from common neural precursor cells (NPCs) during neural development. However, the expression of cell-surface glycoconjugates that are crucial for determining the properties and biological function of these cells at different stages of development has not been clearly defined. In this study, we investigated the expression of several stage-specific glycoconjugate antigens, including several b-series gangliosides GD3, 9-O-acetyl GD3, GT1b and GQ1b, stage-specific embryonic antigen-1 (SSEA-1) and HNK-1, in mouse embryonic NPCs employing immunocytochemistry and flow cytometry. In addition, several of these antigens were positively identified by chemical means for the first time. We further showed that the SSEA-1 immunoreactivity was contributed by both glycoprotein and glycolipid antigens, and that of HNK-1 was contributed only by glycoproteins. Functionally, SSEA-1 may participate in migration of the cells from neurospheres in an NPC cell culture system, and the effect could be repressed by anti-SSEA-1 antibody. Based on this observation, we identified beta1 integrin as one of the SSEA-1 carrier glycoproteins. Our data thus provide insights into the functional role of certain glycoconjugate antigens in NPCs during neural development.  相似文献   

16.
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.  相似文献   

17.
Human anomalous killer (AK) cells lyse freshly isolated human melanoma cells which are insensitive to human natural killer cell-mediated lysis. Monoclonal antibody Leo Mel 3, an IgM (k), produced by a hybridoma obtained from a mouse immunized with human melanoma cells, binds to melanoma cells and inhibits their conjugate formation with AK cells as well as their AK cell-mediated lysis. Other IgM antibodies from the same fusion that bind melanoma cells do not inhibit (Werkmeister, J. A., Triglia, T., Andrews, P., and Burns, G. F. (1985) J. Immunol. 135, 689-695). Leo Mel 3 binds several different gangliosides from melanoma cells, as determined by immunostaining thin layer chromatograms. Binding is abolished by treatment of the gangliosides with neuraminidase. In solid-phase radioimmunoassay, Leo Mel 3 binds strongly to ganglioside GD2 and less strongly to gangliosides GT3, GD3, and GQ1b. It does not bind to other gangliosides including GM1, GM2, GM3, GD1a, GD1b, and GT1b. Thus, the epitope recognized by antibody Leo Mel 3 is found in the sugar sequence of ganglioside GD2, GalNAc beta 1-4[NeuAc alpha 2-8NeuAc alpha 2-3]Gal beta 1-4Glc beta 1 .... This sequence may contain a target in melanoma cells recognized by AK cells.  相似文献   

18.
 Gangliosides GD3, GD2 and GM2, which are the major gangliosides expressed on most human cancers of neuroectodermal and epithelial origin, have been focused on as effective targets for passive immunotherapy with monoclonal antibodies. We previously developed a chimeric anti-GD3 mAb, KM871, and a humanized anti-GM2 mAb, KM8969, which specifically bound to the respective antigen with high affinity and showed potent immune effector functions. Humanization of anti-ganglioside antibody is expected to enhance its use for human cancer therapy. In the present study, we generated a chimeric anti-GD2 mAb, KM1138, and further developed the humanized form of anti-GD2 and anti-GD3 mAbs by the complementarity-determining regions grafting method. The resultant humanized anti-GD2 mAb, KM8138, and anti-GD3 mAb, KM8871, showed binding affinity and specificity similar to those of their chimeric counterparts. In addition, both humanized mAbs had functional potency comparable to the chimeric mAbs in mediating the immune effector functions, consisting of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The production of these humanized anti-ganglioside mAbs, with potent effector functions and low immunogenicity, precedes the evaluation of the therapeutic value of anti-ganglioside mAbs in passive immunotherapy and the target validation for ganglioside-based vaccine therapy. Received: 30 November 2000 / Accepted: 30 January 2001  相似文献   

19.
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD(2) , which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD(2) -specific chimeric antigen receptor (CAR) comprising an anti-GD(2) ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD(2) expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD(2) -specific antibody or anti-idiotypic antibody occupying the CAR's cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD(2) -specific NK cells was also found against primary NB cells and GD(2) expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.  相似文献   

20.
To characterize biomarkers in neural tumors, we analyzed the acidic lipid fractions of 13 neural tumor cell lines using enzyme-linked immunoabsorbent assay (ELISA) and high-performance thin-layer chromatography (HPTLC) immunostaining. Sulfated glucuronosyl glycosphingolipids (SGGLs) are cell surface molecules that are endowed with the Human Natural Killer-1 (HNK-1) carbohydrate epitope. These glycosphingolipids (GSLs) were expressed in all cell lines with concentrations ranging from 210 to 330 ng per 2 x 10(6) cells. Sulfoglucuronosyl paragloboside (SGPG) was the prominent species with lesser amounts of sulfoglucuronosyl lactosaminyl paragloboside (SGLPG) in these tumor cell lines as assessed by quantitative HPTLC immunostaining. Among the gangliosides surveyed, GD3 and 9-O-acetylated GD3 (OAc-GD3) were expressed in all tumor cell lines. In contrast, fucosyl-GM1 was not found to restrict to small cell lung carcinoma cells. In addition, we have analyzed serum antibody titers against SGPG, GD3, and OAc-GD3 in patients with neural tumors by ELISA and HPTLC immunostaining. All sera had high titers of antibodies of the IgM isotype against SGPG (titers over 1:3,200), especially in tumors such as meningiomas, germinomas, orbital tumors, glioblastomas, medulloblastomas, and subependymomas. Serum in a patient with subependymomas also had a high anti-SGGL antibody titer of the IgG and IgA types (titers over 12,800). The titer of anti-GD3 antibody was also elevated in patients with subependymomas and medulloblastomas; the latter cases also had a high titer of antibody against OAc-GD3. Our data indicate that certain GSL antigens, especially SGGLs, GD3, and OAc-GD3, are expressed in neural tumor cells and may be considered as tumor-associated antigens that represent important biomarkers for neural tumors. Furthermore, antibody titers in sera of patients with these tumors may be of diagnostic value for monitoring the presence of tumor cells and tumor progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号