首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human saliva, which is supersaturated with respect to basic calcium phosphate salts, is stabilized primarily by the presence of two classes of phosphoproteins, statherin and the acidic proline-rich proteins (PRP). These molecules act by inhibiting both primary (spontaneous) precipitation of calcium phosphates in saliva and secondary (surface induced) precipitation of these salts onto dental enamel. The complete amino-acid sequences of several human PRP and the N-terminal sequence of PRP from saliva of M. arctoides have been determined. Similarly, the complete sequence of statherin from human and M. fascicularis saliva is known. We now report the complete structure of statherin from the saliva of the stump-tailed monkey, M. arctoides. The structure was determined by gas-phase sequencing of intact statherin, elucidating positions 1-26, and sequencing an unpurified mixture of tryptic peptides which elucidated the remaining positions through the C-terminus (residue 42) of the molecule. This latter degradation produced an eight amino-acid overlap with that of intact statherin and was confirmed by C-terminal analysis and amino-acid composition of native statherin. The complete amino-acid sequence of M. arctoides statherin is: NH2-Asp-PSer-PSer-Glu-Glu5-Lys-Phe-Leu-Arg-Arg10 -Leu-Arg-Arg-Phe-Asp15-Glu- Gly-Arg-Tyr-Gly20-Pro-Tyr-Gln-Pro-Phe25-Val-Pro-Pro- Pro29Leu30-Tyr- Pro-Gln-Pro-Tyr35-Gln-Pro-Tyr-Gln-Pro40-Gln-Tyr-COOH This sequence differs from human statherin at positions 11, 12, 15, 16, 18, 25-27, 38-40 and from M. fascicularis statherin at positions 26 and 28.  相似文献   

2.
Human salivary secretions are supersaturated with respect to basic calcium phosphates but spontaneous precipitation of these salts from saliva, or surface-induced precipitation of calcium phosphates onto dental enamel, does not normally occur. This unexpected stability has been attributed to the inhibitory activities of two kinds of salivary phosphoproteins: statherin and the acidic, proline-rich phosphoproteins (PRP). Investigation of the structure-function relationships of statherin, the most potent inhibitor of primary (spontaneous) and secondary (seeded) precipitation of calcium phosphate salts in human saliva has been limited to studies of peptide segments obtained from the native peptide by specific proteolysis. Solid phase peptide synthesis (SPPS) is a useful and potentially more flexible alternative. Phosphoserine residues (positions 2 & 3) play critically important roles in the precipitation-inhibition activities of statherin, but SPP synthesis of these phosphorylated peptides is precluded because of the instability of phosphoserine residues in the presence of HF. Thus, this peptide was synthesized by solution-phase methods. The dipeptide possessed substantial inhibitory activity in assays for inhibition of both primary and secondary precipitation of calcium phosphate salts, but was not as active as either N-terminal tryptic hexapeptide of statherin or intact statherin. Syntheses of other model phosphorylated peptides are underway to expand the structure-function relationships.  相似文献   

3.
The β subunit of human choriogonadotropin (hCGβ) and its asialoderivative were digested with trypsin and then reduced and S-carboxymethylated. A series of peptides were purified which corresponded to residues 1–43, 44–95, 96–114, and 123–145 of the 145 amino acid residue glycoprotein. The two N-linked oligosaccharides were present on the amino terminal peptide, and three of the four O-linked oligosaccharides were present on the carboxy terminal peptide. Circular dichroic spectra between 190–240 nm were obtained on reduced, S-carboxymethylated (RCM) hCGβ and the above peptides, both in aqueous solution and in the helicogenic solvent 80% (vol/vol) trifluoroethanol (TFE). In aqueous solution there was evidence of only limited helicity in the peptides and RCM-hCGβ however, in the presence of TFE, peptides 1–43 and 44–95 exhibited significant helicity, as did the full-length linear chain. The helicity developed in TFE by RCM-hCGβ appears much greater than that which occurs in the native, disulfide-intact form, thus suggesting that the disulfides prevent expression of helicity in regions with α-helix potential. Application of the Chou-Fasman secondary structure predictive algorithm to hCGβ suggested that several regions of helix potential, in particular regions 14–21, 59–69, and perhaps 80–88, may account for much of the helicity observed in peptides 1–43 and 44–95, respectively, in TFE. The region from 96–145 has no significant potential for helicity, consistent with the measured circular dichroic spectra of peptides 96–114 and 123–145. These results demonstrate that helicity can occur in the linear form of hCGβ, and this secondary structure can best be attributed to the amino terminal and the middle portion of the molecule. Several potential regions of β-structure and β-turns were also suggested.  相似文献   

4.
This work reports the successful recombinant expression of human statherin in Escherichia coli, its purification and in vitro phosphorylation. Human statherin is a 43-residue peptide, secreted by parotid and submandibular glands and phosphorylated on serine 2 and 3. The codon-optimized statherin gene was synthesized and cloned into commercial pTYB11 plasmid to allow expression of statherin as a fusion protein with intein containing a chitin-binding domain. The plasmid was transformed into E. coli strains and cultured in Luria–Bertani medium, which gave productivity of soluble statherin fusion protein of up to 47 mg per liter of cell culture, while 112 mg of fusion protein were in the form of inclusion bodies. No significant refolded target protein was obtained from inclusion bodies. The amount of r-h-statherin purified by RP–HPLC corresponded to 0.6 mg per liter of cell culture. Attenuated total reflection-Fourier transform infrared spectroscopy experiments performed on human statherin isolated from saliva and r-h-statherin assessed the correct folding of the recombinant peptide. Recombinant statherin was transformed into the diphosphorylated biologically active form by in vitro phosphorylation using the Golgi-enriched fraction of pig parotid gland containing the Golgi-casein kinase.  相似文献   

5.
Tyrosylprotein sulfotransferase (TPST), responsible for the sulfation of a variety of secretory and membrane proteins, has been identified and characterized in submandibular salivary glands (William et al. Arch Biochem Biophys 1997; 338: 90-96). In the present study we demonstrate the sulfation of a salivary secretory protein, statherin, by the tyrosylprotein sulfotransferase present in human saliva. Optimum statherin sulfation was observed at pH 6.5 and at 20 mm MnCl(2). Increase in the level of total sulfation was observed with increasing statherin concentration. The K(m)value of tyrosylprotein sulfotransferase for statherin was 40 microM. Analysis of the sulfated statherin product on SDS-polyacrylamide gel electrophoresis followed by autoradiography revealed (35)S-labelling of a 5 kDa statherin. Further analysis of the sulfated statherin revealed the sulfation on tyrosyl residue. This study is the first report demonstrating tyrosine sulfation of a salivary secretory protein. The implications of this sulfation of statherin in hydroxyapatite binding and Actinomyces viscosus interactions are discussed.  相似文献   

6.
Human salivary secretions contain many proteins in which proline forms an unusually large fraction of the amino-acid residues present, typically from 20% to over 40%. These proteins are also unusually rich in glycine and glutamine, generally account for over half the total protein in saliva, and include acidic, basic and glycosylated molecules. The functions of most of these are not clearly defined. One group, however, the acidic proline-rich phosphoproteins (PRP), have been shown to be potent inhibitors of secondary precipitation (crystal growth) of calcium phosphate salts. Acting together with a salivary protein inhibitor of primary precipitation of calcium phosphates, statherin, the PRP stabilize saliva which is supersaturated with respect to the calcium phosphate salts which form dental enamel. These inhibitory activities act to provide a protective, reparative, but stable environment for dental enamel, which is important for maintaining the health of the teeth. The PRP are a complex group of phosphoproteins which include four major and at least eight minor members. The primary structures of three of the major proteins have been determined. These are PRP-1, also designated Protein-C, PRP-3, also designated Protein-A (17), and PRP-4. The designations PRP-1,-2,-3 and -4 will be used here. The purpose of this paper is to report the complete primary structure of PRP-2 as a further step towards establishing the structural basis of the biological activity of the PRP, and clarifying the genetic and biosynthetic relationships of these closely related proteins.  相似文献   

7.
Salivary statherin is a highly acidic, 43 amino acid residue protein that functions as an inhibitor of primary and secondary crystallization of the biomineral hydroxyapatite. The acidic domain at the N-terminus was previously shown to be important in the binding of statherin to hydroxyapatite surfaces. This acidic segment is followed by a basic segment whose role is unclear. In this study, the role of the basic amino acids in the hydroxyapatite adsorption thermodynamics has been determined using isothermal titration calorimetry and equilibrium adsorption isotherm analysis. Single point mutations of the basic side chains to alanine lowered the binding affinity to the surface but did not perturb the maximal surface coverage and the adsorption enthalpy. The structural and dynamic properties of the single point mutants as characterized by solid-state NMR techniques were not altered either. Simultaneous replacement of all four basic amino acids with alanine lowered the adsorption equilibrium constant by 5-fold and the maximal surface coverage by nearly 2-fold. The initial exothermic phase of adsorption exhibited by native statherin is preserved in this mutant, along with the alpha-helical structure and the dynamic properties of the N-terminal domain. These results help to refine the two binding site model of statherin adsorption proposed earlier in our study of wild-type statherin (Goobes, R., Goobes, G., Campbell, C.T., and Stayton, P.S. (2006) Biochemistry 45, 5576-5586). The basic charges function to reduce protein-protein charge repulsion on the HAP surface, and in their absence, there is a considerable decrease in statherin packing density on the surface at binding saturation.  相似文献   

8.
Statherin is a salivary protein that inhibits the nucleation and growth of hydroxyapatite crystals in the supersaturated environment of the oral cavity. The thermodynamics of adsorption of statherin onto hydroxyapatite crystals have been characterized here by isothermal titration calorimetry and equilibrium adsorption isotherm analysis. At 25 degrees C, statherin adsorption is characterized by an exothermic enthalpy of approximately 3 kcal/mol that diminishes to zero at approximately 25% surface coverage. The initial heat of statherin adsorption increases with temperature, displaying a positive heat capacity change of 194 +/- 7 cal K(-)(1) mol(-)(1) at 25 degrees C. The heat of adsorption during this initial phase is strongly dependent on the buffer species, and from the differential heats of buffer ionization, it can be calculated that approximately one proton is taken up by the crystal or protein upon adsorption. The free energy of adsorption is dominated at all coverages by a large positive entropy (>or=23 cal K(-)(1) mol(-)(1)), which may be partially due to the loss of organized water that hydrates the protein and the mineral surface prior to adsorption. These results are interpreted using a two-site model for adsorption of statherin onto the hydroxyapatite crystals.  相似文献   

9.
Candida albicans , the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 °C under aerobic conditions with 5% CO2. Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.  相似文献   

10.
The expression of the transforming gene product of Rous sarcoma virus (pp60v-src) in Saccharomyces cerevisiae has recently been reported (Kornbluth et al., 1987; Brugge et al., 1987). To carry out biochemical and structural studies of this enzyme, a facile purification was developed. The purification was accomplished in four chromatographic steps: Q-Sepharose, Affi-Gel Blue, phosphoagarose, and hydroxylapatite chromatography. The tyrosine kinase was isolated in milligram quantities as two highly active proteolytic fragments (52 and 54 kDa). Three model tyrosine kinase substrates with propensities to adopt helical or omega-loop conformations were synthesized and characterized. The peptides were based on the sites of phosphorylation of pp60v-src, lipocortin I, and lipocortin II. Circular dichroism spectroscopy was used to study the conformation of the helix-forming peptides in 50 mM Tris and in 50% trifluoroethanol/Tris. Peptide 1, which was designed to form an amphiphilic alpha-helix, displayed 24.2% helicity in buffer and 40.2% helicity in 50% TFE/buffer. Similar experiments for peptide 3, the other helix former, showed a lower helicity (8.1% helical and 26.0% helical in buffer and in 50% TFE/buffer, respectively). All three peptides were shown to be substrates for the recombinant tyrosine kinase. Kinetic measurements using high-voltage paper electrophoresis indicated that the helix-forming peptides exhibited low KM values (approximately 450 microM) for the purified src gene product, consistent with the notion that elements of secondary structure may be important in substrate recognition by tyrosine kinases.  相似文献   

11.
Statherin is a multifunctional polypeptide specific of human saliva involved in oral calcium homeostasis, phosphate buffering and formation of protein networks. Salivary P-B peptide is usually included into the basic proline-rich protein family but it shows some similarities with statherin and its specific biological role is still undefined. In this study, various fragments and derivatives of statherin and P-B peptide were consistently detected by RP-HPLC ESI-IT MS in 23 samples of human saliva. They were: statherin mono- and non-phosphorylated, statherin Des-Phe(43) (statherin SV1), statherin Des-Thr(42),Phe(43), statherin Des-Asp(1), statherin Des(6-15) (statherin SV2), statherin Des(1-9), statherin Des(1-10), statherin Des(1-13) and P-B Des(1-5). Statherin SV3 (statherin Des(6-15), Phe(43)) was detected only in one sample. Identity of the fragments was confirmed either by MS/MS experiments or by enzymatic digestion or by Edman sequencing. Detection of the fragments suggests that statherin and P-B peptide are submitted to post-translational proteolytic cleavages that are common to other classes of salivary proteins.  相似文献   

12.
We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces.  相似文献   

13.
The secondary structure content of the recombinant human mu-opioid receptor (HuMOR) solubilized in trifluoroethanol (TFE) and in detergent micelles was investigated by circular dichroism. In both conditions, this G protein-coupled receptor adopts a characteristic alpha-helical structure, with minima at 208 and 222 nm as observed in the circular dichroism spectra. After deconvolution of spectra, the alpha-helix contents were estimated to be in the range of 50% in TFE and in sodium dodecyl sulfate at pH 6. These values are in accordance with the predicted secondary structure content determined for the mu-opioid receptor. A pH-dependent effect was observed on the secondary structure of the receptor solubilized in detergents, which demonstrates the essential role of ionic and hydrophobic interactions on the secondary structure. Circular dichroism spectra of EGFP-HuMOR, a fusion protein between the enhanced green fluorescent protein (EGFP) and the mu-opioid receptor, and EGFP solubilized in TFE were also analyzed as part of this study.  相似文献   

14.
15.
The subunit of human choriogonadotropin (hCG) and its asialoderivative were digested with trypsin and then reduced and S-carboxymethylated. A series of peptides were purified which corresponded to residues 1–43, 44–95, 96–114, and 123–145 of the 145 amino acid residue glycoprotein. The two N-linked oligosaccharides were present on the amino terminal peptide, and three of the four O-linked oligosaccharides were present on the carboxy terminal peptide. Circular dichroic spectra between 190–240 nm were obtained on reduced, S-carboxymethylated (RCM) hCG and the above peptides, both in aqueous solution and in the helicogenic solvent 80% (vol/vol) trifluoroethanol (TFE). In aqueous solution there was evidence of only limited helicity in the peptides and RCM-hCG however, in the presence of TFE, peptides 1–43 and 44–95 exhibited significant helicity, as did the full-length linear chain. The helicity developed in TFE by RCM-hCG appears much greater than that which occurs in the native, disulfide-intact form, thus suggesting that the disulfides prevent expression of helicity in regions with -helix potential. Application of the Chou-Fasman secondary structure predictive algorithm to hCG suggested that several regions of helix potential, in particular regions 14–21, 59–69, and perhaps 80–88, may account for much of the helicity observed in peptides 1–43 and 44–95, respectively, in TFE. The region from 96–145 has no significant potential for helicity, consistent with the measured circular dichroic spectra of peptides 96–114 and 123–145. These results demonstrate that helicity can occur in the linear form of hCG, and this secondary structure can best be attributed to the amino terminal and the middle portion of the molecule. Several potential regions of -structure and -turns were also suggested.  相似文献   

16.
Cell adhesion molecule, CD2, from the immunoglobulin superfamily, is comprised of antibodies and Ig-like domains and plays a fundamental role, not only in the immune system, but also in the interactions between cells, specifically in cell-cell adhesion. This study examines the N-terminal domain 1 of CD2 (CD2-1) at different pHs, and in 2,2,2-trifluoroethanol (TFE), using nears- and far-UV circular dichroism (CD), fluorescence, and 1H nuclear magnetic resonance to elucidate factors contributing to the Ig beta-structure. Contrary to the complete unfolding induced by guanidinehydrochloride, CD2-1 retains its native tertiary structure at pHs from 1.0 to 10.0. Like the effects of high temperatures that have previously been observed, TFE reduces the integrity of the tertiary structure, while reorganizing the secondary structure from a native all-beta-sheet to a significantly alpha-helical conformation. The induced helicity of CD2-1 correlates with the helicity inherent in its primary sequence. Our results suggest that electrostatic interactions are less important for the formation of the native secondary and tertiary structure of CD2-1, although they are crucial for CD2's adhesion function. Interference with the protein's hydrophobic interactions and hydrogen-bonding networks, however, causes significant changes in its conformation. Residues of CD2-1, with high conformational flexibility, may contribute for the formation of a metastable dimer by domain-swapping.  相似文献   

17.
The lubricating properties of human submandibular-sublingual salivary fractions were examined using a servohydraulic model of mandibular movement. Fractions containing statherin exhibited a strong tendency to boundary lubrication. The lubricity of purified statherin was confirmed and compared to the amphipathic molecules gramacidin S and sodium dodecyl sulfate. Contact angle measurements of statherin paralleled the other amphipathic molecules. The helical content of statherin increased in trifluoroethanol indicating the presence of amphipathic helical regions. CD studies and hydrophobic moment calculations indicated that statherin adopts an amphipathic helical conformation at the N-terminus. An energy-minimized model of the polar N-terminal residues 1-15 suggested that this domain could be positioned in space to interact with a hydroxyapatite substrate. These data imply that under appropriate conditions statherin may display an amphipathic nature which enables it to function as a boundary lubricant on enamel.  相似文献   

18.
Keller D  Clausen R  Josefsen K  Led JJ 《Biochemistry》2001,40(35):10732-10740
The structure and folding of a novel human insulin mutant, [Thr(B27) --> Pro, Pro(B28) --> Thr]insulin (PT insulin), in aqueous solution and in mixtures of water and 2,2,2-trifluoroethanol (TFE) have been studied by NMR spectroscopy. It was found that PT insulin has a highly flexible structure in pure water and is present in at least two different conformations, although with an overall tertiary structure similar to that of native insulin. Furthermore, the native helical structures are poorly defined. Surprisingly, the mutant has a biological activity about 50% higher than native insulin. In contrast, in TFE/water solution the mutant reveals a propensity of forming a well-defined structure at the secondary structure level, similar to monomeric native insulin. Thus, as shown by a detailed determination of the structure from 208 distance restraints and 52 torsion angle restraints by distance geometry, simulated annealing, and restrained energy minimization, the native insulin helices (A2-A7, A13-A19, and B10-B19) as well as the beta-turn (B20-B23) are formed in 35% TFE. However, the amount of tertiary structure is decreased significantly in TFE/water solution. The obtained results suggest that only an overall tertiary fold, as observed for PT insulin in pure water, is necessary for expressing the biological activity of insulin, as long as the molecule is flexible and retains the propensity to form the secondary structure required for its receptor binding. In contrast, a compact secondary structure, as found for native insulin in solution, is unnecessary for the biological activity. A model for the receptor binding of insulin is suggested that relates the increased bioactivity to the enhanced flexibility of the mutant.  相似文献   

19.
S R Lehrman  J L Tuls  M Lund 《Biochemistry》1990,29(23):5590-5596
The relationship between trifluoroethanol (TFE) enhancement of peptide alpha-helicity and protein secondary structure has been studied for a series of 11 peptides which span the complete primary sequence of bovine growth hormone (bGH). Ten of these peptides become increasingly alpha-helical as the solution concentration of TFE is increased. The amount of alpha-helicity developed by these peptides plateaus above 10 mol % TFE and ranges from 0 to 71%. The increased alpha-helicity, as determined by CD, closely correlates with the amount of alpha-helix predicted for eight of the eleven peptides analyzed (r = 0.9). Therefore, for this group of peptides, it appears that this technique can be used as a measure of alpha-helical propensity. Inclusion of the remaining three peptides in this analysis significantly lowers the correlation (r = 0.6). The reduced correspondence between TFE-enhanced and predicted alpha-helicity in this latter subset of peptides may be due to their relatively high hydrophobicity. In addition, the relevance of TFE-enhanced peptide alpha-helicity and the secondary structure of the corresponding protein regions was explored. Although the three peptides which form the largest amount of alpha-helicity in the presence of 10 mol % TFE correspond to alpha-helical regions of the protein, the overall correlation is significantly lower than is observed for the TFE-enhanced and predicted alpha-helicity. These findings suggest that the propensity of specific amino acid sequences for alpha-helix formation influences the amount of alpha-helicity which forms in corresponding protein sequences, but that other factors can modify this structure.  相似文献   

20.
In the brains of Alzheimer's disease patients, the tau protein dissociates from the axonal microtubule and abnormally aggregates to form a paired helical filament (PHF). One of the priorities in Alzheimer research is to clarify the mechanism of PHF formation. Although several reports on the regulation of tau assembly have been published, it is not yet clear whether in vivo PHFs are composed of beta-structures or alpha-helices. Since the four-repeat microtubule-binding domain (4RMBD) of the tau protein has been considered to play an essential role in PHF formation, its heparin-induced assembly propensity was investigated by the thioflavin fluorescence method to clarify what conformation is most preferred for the assembly. We analyzed the assembly propensity of 4RMBD in Tris-HCl buffer with different trifluoroethanol (TFE) contents, because TFE reversibly induces the transition of the random structure to the alpha-helical structure in an aqueous solution. Consequently, it was observed that the 4RMBD assembly is most significantly favored to proceed in the 10-30% TFE solution, the concentration of which corresponds to the activated transition state of 4RMBD from a random structure to an alpha-helical structure, as determined from the circular dichroism (CD) spectral changes. Since such an assembly does not occur in a buffer containing TFE of < 10% or > 40%, the intermediate conformation between the random and alpha-helical structures could be most responsible for the PHF formation of 4RMBD. This is the first report to clarify that the non-native alpha-helical intermediate in transition from random coil is directly associated with filament formation at the start of PHF formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号