首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of H2O2 in detached rice leaves of Taichung Native 1 (TN1) caused by CdCl2 was investigated. CdCl2 treatment resulted in H2O2 production in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase (NOX), prevented CdCl2-induced H2O2 production, suggesting that NOX is a H2O2-genearating enzyme in CdCl2-treated detached rice leaves. Phosphatidylinositol 3-kinase inhibitors wortmanin (WM) or LY294002 (LY) inhibited CdCl2-inducted H2O2 production in detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY, suggesting that phosphatidylinositol 3-phosphate is required for Cd-induced H2O2 production in detached rice leaves. Nitric oxide donor sodium nitroprusside (SNP) was also effective in reducing CdCl2-inducing accumulation of H2O2 in detached rice leaves. Cd toxicity was judged by the decrease in chlorophyll content. The results indicated that DPI, IMD, WM, LY, and SNP were able to reduce Cd-induced toxicity of detached rice leaves. Twelve-day-old TN1 and Tainung 67 (TNG67) rice seedlings were treated with or without CdCl2. In terms of Cd toxicity (leaf chlorosis), it was observed that rice seedlings of cultivar TN1 are Cd-sensitive and those of cultivar TNG67 are Cd-tolerant. On treatment with CdCl2, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Prior exposure of TN1 seedlings to 45oC for 3 h resulted in a reduction of H2O2 accumulation, as well as Cd tolerance of TN1 seedlings treated with CdCl2. The results strongly suggest that Cd toxicity of detached leaves and leaves attached to rice seedlings are due to H2O2 accumulation.  相似文献   

2.
Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent.  相似文献   

3.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

4.
Rice leaves produce H2O2 in response to abscisic acid (ABA), which results in induction of senescence and accumulation of NH4+. The upstream steps of the ABA-induced H2O2 production pathway in rice leaves remain largely unclear. In animal cells, H2O2 production in neutrophils is activated by phosphatidylinositol 3-phosphate (PI3P), a product of phosphatidylinositol 3-knase (PI3K). In the present study, we examined whether PI3P plays a role in H2O2 production in rice leaves exposed to ABA. We found that PI3K inhibitors LY 294002 (LY) or wortmannin (WM) inhibited ABA-induced H2O2 production, senescence and NH4+ accumulation. Hydrogen peroxide almost completely rescued the inhibitory effect of LY or WM. It appears that PI3P plays a role in ABA-induced H2O2 production, senescence, and NH4+ accumulation in rice leaves.  相似文献   

5.
The role of H2O2 in salicylic acid (SA)-induced protection of rice leaves against subsequent Cd toxicity was investigated. SA pretreatment resulted in an increase in the contents of endogenous SA, as judged by the expression of OsWRKY45 (a SA responsive gene), and H2O2 in rice leaves. Diphenyleneiodonium (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented SA-increased H2O2 production, suggesting that NADPH oxidase is a H2O2-generating enzyme in SA-pretreated rice leaves. DPI and IMD also inhibited SA-increased activities of superoxide dismutase (SOD), ascorbate peroixdase (APX), and glutathione reductase (GR) activities, but had no effect on SA-increased catalase (CAT) activity. Moreover, SA-induced protection against subsequent Cd toxicity could also be prevented by DPI and IMD. The inhibitory effect of DPI and IMD on SA-induced protection against subsequent Cd toxicity could be reversed by exogenous H2O2. All these results suggested that SA-induced protection against subsequent Cd toxicity is mediated through H2O2. This conclusion is supported further by the observations that exogenous H2O2 application resulted in an increase in SOD, APX, and GR activities, but not CAT activity and a protection against subsequent Cd toxicity of rice leaves.  相似文献   

6.
Magnesium (Mg) deficiency in plants is a widespread problem, affecting productivity and quality in agriculture. The mechanism of Mg deficiency inducing antioxidant enzyme activities has not been elucidated in rice. We examined the relationship among abscisic acid (ABA), H2O2, and antioxidant enzymes in the leaves of rice seedlings grown under conditions of Mg deficiency. The expression of OsRab16A, an ABA responsive gene, was used to determine the content of ABA. Mg deficiency resulted in increased ABA content in leaves of rice seedlings. The production of H2O2 was examined by 3,3-diaminobenzidine staining and a colorimetric method. Mg deficiency also induced H2O2 production in leaves, which was blocked by dipehnyleneiodonium chloride (DPI), an NADPH oxidase inhibitor. Tungstate (Tu), an ABA biosynthesis inhibitor, was effective in reducing Mg deficiency-increased ABA content, as well as Mg deficiency-induced H2O2 production. Both Tu and DPI were effective in reducing Mg deficiency-induced activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in the leaves. Mg deficiency-induced ABA accumulation may trigger increased production of H2O2, which may involve plasma-membrane NADPH oxidase, and, in turn, up-regulates the activities of antioxidant enzymes in leaves of rice seedlings.  相似文献   

7.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

8.
The effects of methyl jasmonate (MJ) and abscisic acid (ABA) on some physiological processes of rice were compared. MJ exhibited ABA-like effects by promoting senescence of detached leaves, by inducing acid phosphatase activity of detached leaves, by inhibiting ethylene production and shoot growth of seedlings, as well as inhibiting callus formation from anthers. However, MJ and ABA had opposite effects on 1-aminocyclopropane-1-carboxylic acid-dependent ethylene production in detached leaves. The regeneration ability of anther-derived callus was inhibited by MJ but not by ABA. MJ but not ABA markedly induced peroxidase activity in senescing detached leaves. It is concluded that not all physiological processes of rice affected by MJ are similar to those by ABA.Abbreviations ABA abscisic acid - MJ methyl jasmonate - ACC 1-aminocyclopropane-l-carboxylic acid - Apase acid phosphatase  相似文献   

9.
The role of ethylene in jasmonate-promoted senescence of detached rice leaves was investigated. Ethylene production in methyl jasmonate-treated leaf segments of rice was lower than in the control leaves. Treatment of leaf segments with silver nitrate or/and silver thiosulfate, inhibitors of ethylene action, inhibited methyl jasmonate-, jasmonic acid-, linolenic acid-, and abscisic acid-promoted senescence of detached leaves. We suggest that an increase in ethylene sensitivity, but not ethylene level, is the initial event triggering the enhanced senescence by jasmonates of detached rice leaves.Abbreviations JA jasmonic acid - MJ methyl jasmonate - STS silver thiosulfate - ABA abscisic acid  相似文献   

10.
11.
The role of H2O2 in abscisic acid (ABA)-induced rice leaf senescence is investigated. ABA treatment resulted in H2O2 production in rice leaves, which preceded the occurrence of leaf senescence. Dimethylthiourea, a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced senescence, ABA-increased malondialdehyde (MDA) content, ABA-increased antioxidative enzyme activities (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase), and ABA-decreased antioxidant contents (ascorbic acid and reduced glutathione) in rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, and KCN and NaN3, inhibitors of peroxidase, prevented ABA-induced H2O2 production, suggesting NADPH oxidase and peroxidase are H2O2-generating enzymes in ABA-treated rice leaves. DPI, IMD, KCN, and NaN3 also inhibited ABA-promoted senescence, ABA-increased MDA contents, ABA-increased antioxidative enzyme activities, and ABA-decreased antioxidants in rice leaves. These results suggest that H2O2 is involved in ABA-induced senescence of rice leaves.  相似文献   

12.
In this study, the role of the rice(Oryza sativa L.)histidine kinase Os HK3 in abscisic acid(ABA)-induced antioxidant defense was investigated. Treatments with ABA, H2O2,and polyethylene glycol(PEG) induced the expression of Os HK3 in rice leaves, and H2O2 is required for ABA-induced increase in the expression of Os HK3 under water stress. Subcellular localization analysis showed that Os HK3 is located in the cytoplasm and the plasma membrane. The transient expression analysis and the transient RNA interference test in rice protoplasts showed that Os HK3 is required for ABA-induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that Os HK3 functions upstream of the calcium/calmodulin-dependent protein kinase Os DMI3 and the mitogen-activated protein kinase Os MPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, Os HK3was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, Osrboh B and Osrboh E, and the production of H2O2 in ABA signaling. Our data indicate that Os HK3 play an important role in the regulation of ABA-induced antioxidant defense and in the feedback regulation of H2O2 production in ABA signaling.  相似文献   

13.
The possible role of H2O2 metabolism on light-regulated senescence of detached rice leaves was investigated. Light retards senescence but at the same time accumulates more H2O2. Light treatment resulted in an increase in malondialdehyde level in detached rice leaves but no membrane leakage was observed in light-treated detached leaves. It seems that there was no direct relationship between lipid peroxidation and deterioration in membrane integrity. The results obtained suggest that retardation of senescence by light is closely related to high activities of superoxide dismutase and ascorbate peroxidase.  相似文献   

14.
The role of hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced anthocyanin accumulation in detached and intact leaves of rice seedlings was investigated. Treatment with ABA resulted in an accumulation of anthocyanins in detached rice leaves. Dimethylthiourea, a chemical trap for H(2)O(2), was observed to be effective in inhibiting ABA-induced accumulation of anthocyanins. Inhibitors of NADPH oxidase (diphenyleneiodonium chloride and imidazole), phosphatidylinositol 3-kinase (wortmannin and LY 294002), and a donor of nitric oxide (N-tert-butyl-alpha-phenylnitrone), which have previously been shown to prevent ABA-induced H(2)O(2) accumulation in detached rice leaves, inhibited ABA-induced anthocyanin increase. Exogenous application of H(2)O(2), however, was found to increase the anthocyanin content of detached rice leaves. In terms of H(2)O(2) accumulation, intact (attached) leaves of rice seedlings of cultivar Taichung Native 1 (TN1) are ABA sensitive and those of cultivar Tainung 67 (TNG67) are ABA insensitive. Upon treatment with ABA, H(2)O(2) and anthocyanins accumulated in leaves of TN1 seedlings but not in leaves of TNG67. Our results, obtained from detached and intact leaves of rice seedlings, suggest that H(2)O(2) is involved in ABA-induced anthocyanin accumulation in this species.  相似文献   

15.
In rice, the Ca2+/calmodulin (CaM)‐dependent protein kinase (CCaMK) OsDMI3 has been shown to be required for abscisic acid (ABA)‐induced antioxidant defence. However, it is not clear how OsDMI3 participates in this process in rice. In this study, the cross‐talk between OsDMI3 and the major ABA‐activated MAPK OsMPK1 in ABA‐induced antioxidant defence was investigated. ABA treatment induced the expression of OsDMI3 and OsMPK1 and the activities of OsDMI3 and OsMPK1 in rice leaves. In the mutant of OsDMI3, the ABA‐induced increases in the expression and the activity of OsMPK1 were substantially reduced. But in the mutant of OsMPK1, the ABA‐induced increases in the expression and the activity of OsDMI3 were not affected. Pretreatments with MAPKK inhibitors also did not affect the ABA‐induced activation of OsDMI3. Further, a transient expression analysis in combination with mutant analysis in rice protoplasts showed that OsMPK1 is required for OsDMI3‐induced increases in the activities of antioxidant enzymes and the production of H2O2. Our data indicate that there exists a cross‐talk between OsDMI3 and OsMPK1 in ABA signalling, in which OsDMI3 functions upstream of OsMPK1 to regulate the activities of antioxidant enzymes and the production of H2O2 in rice.  相似文献   

16.
In the present study, we evaluate the protective effect of nitric oxide (NO) against senescence of rice leaves promoted by methyl jasmonate (MJ). Senescence of rice leaves was determined by the decrease of protein content. MJ treatment resulted in (1) induction of leaf senescence, (2) increase in H2O2 and malondialdehyde (MDA) contents, (3) decrease in reduced form glutathione (GSH) and ascorbic acid (AsA) contents, and (4) increase in antioxidative enzyme activities (ascorbate peroxidase, glutathione reductase, peroxidase and catalase). All these MJ effects were reduced by free radical scavengers such as sodium benzoate and GSH. NO donors [N-tert-butyl-α-phenylnitrone (PBN), sodium nitroprusside, 3-morpholinosydonimine, and AsA+NaNO2] were effective in reducing MJ-induced leaf senescence. PBN prevented MJ-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and AsA, and increase in the activities of antioxidative enzymes. The protective effect of PBN on MJ-promoted senescence, MJ-increased H2O2 content and lipid peroxidation, MJ-decreased GSH and AsA, and MJ-increased antioxidative enzyme activities was reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO-specific scavenger, suggesting that the protective effect of PBN is attributable to NO released. Reduction of MJ-induced senescence by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2  相似文献   

17.
Pea seedlings (Pisum sativum L.) were used as materials to test the timings and compartments of hydrogen peroxide (H2O2) triggered by wounding and exogenous jasmonic acid (JA). The results showed that H2O2 could be systemically induced by wounding and exogenous JA. H2O2 increased within 1 h and reached the peak 3–5 h after wounding in either the wounded leaves or the unwounded leaves adjacent to the wounded ones and the inferior leaves far from the wounded ones. After this, H2O2 decreased and recovered to the control level 12 h after wounding. The activities of antioxidant enzymes, however, were rapidly increased by wounding. Diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, could significantly inhibit H2O2 burst that was mediated by wounding and exogenous JA. Assay of H2O2 subcellular location showed that H2O2 in response to wounding and exogenous JA was predominantly accumulated in plasma membrane, cell wall and apoplasmic space. Numerous JA (gold particles) was found via immunogold electron microscopy to be located in cell wall and phloem zones of mesophyll cell after wounding.  相似文献   

18.
The possible role of ethylene and abscisic acid (ABA) in regulating thetoxicity of detached rice leaves induced by phosphinothricin (PPT) andmethionine sulfoximine (MSO), both known to be glutamine synthetase (GS)inhibitors, was studied. During 12 h of incubation, PPT and MSOinhibited GS activity, accumulated NH4 + and inducedtoxicity of detached rice leaves in the light but not in darkness. PPT and MSOtreatments also resulted in an increase of ethylene production and ABA contentin a light dependent way. Addition of fluridone, an inhibitor of ABAbiosynthesis, reduced ABA content in rice leave but did not preventNH4 + toxicity of rice leaves induced by PPT and MSO.Cobalt ion, an inhibitor of ethylene biosynthesis, affected PPT- andMSO-inducedtoxicity of detached rice leaves but had no effect on PPT- and MSO-inducedNH4 + accumulation. Results suggest that ethylene but notABA may be responsible for PPT- and MSO-induced toxicity of detached riceleaves.  相似文献   

19.
The glycollate metabolism of wheat (Triticum vulgare Vill. cv. Sonalika) and rice (Oryza sativa L. ev. Jaya) leaves was studied during senescence by estimating the endogenous levels of glycollate and hydrogen peroxide (H2O2) and the activities of glycollate oxidase and catalase. In comparison with light incubation the incubation of excised leaves in the dark caused a decline in the glycollate content and in the activities of glycollate oxidase and catalase, and an increase in the H2O2 content, more marked in the leaves of rice than in the leaves of wheat. Glycollate oxidase activity gradually decreased with incubation time, and glycollate metabolism decreased during senescence. The glycollate oxidase in particular and glycollate metabolism of rice were more sensitive to incubation time than those of wheat. Kinetin increased the glycollate oxidase activity and glycollate metabolism during senescence, while ethrel (2-chloroethylpho-sphonic acid) and ABA (abscisic acid) reduced these activities in both plant species.  相似文献   

20.
The possibility that ammonium (NH 4 + ) accumulation is linked to the senescence of detached rice (Oryza sativa) leaves induced by copper (Cu) was investigated. CuSO4 was effective in promoting senescence of detached rice leaves. Both CuSO4 and CuCl2 induced NH 4 + accumulation in detached rice leaves, indicating that NH 4 + accumulation is induced by copper. Sulfate salts of Mg, Mn, Zn, and Fe were ineffective in inducing NH 4 + accumulation in detached rice leaves. The senescence of detached rice leaves induced by Cu was found to be prior to NH 4 + accumulation. Free radical scavengers, such as glutathione and thiourea, inhibited senescence caused by Cu and at the same time inhibited Cu-induced NH 4 + accumulation. The current results suggest that NH 4 + accumulation is not associated with senescence induced by Cu, but is part of the overall expression of oxidative damage caused by an excess of Cu. Evidence was presented to show that copper-induced ammonium accumulation in detached rice leaves is attributed to a decrease in glutamine synthetase activity and an increase in reduction of nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号