首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physiological correlation between NDP-kinase and the enzyme-associated guanine nucleotide binding proteins (G1 and G2) has been studied in vitro. It was found that incubation of the phosphoenzyme (enzyme-bound high-energy phosphate intermediate) of NDP-kinases with one of the nucleoside 5'-diphosphates (NDPs) in the presence of divalent cations (Mg2+ and Ca2+) results in the formation of nucleoside 5'-triphosphates (NTPs) within 40 sec even at low temperatures (below 4 degrees C) without strict base-specificity; and high-energy phosphates on the phosphoenzyme can transfer preferentially to GDP on the guanine nucleotide binding proteins (G1, G2 and r-p21 protein) in the presence of 0.25 mM Ca2+ or 1 mM Mg2+ even if any other NDPs are present in the reaction mixtures. These observations suggest that NDP-kinase may be responsible for the phosphate-transfer between GDP on the guanine nucleotide binding proteins and its phosphoenzyme.  相似文献   

2.
The physiological correlation between nucleoside-diphosphate kinases (NDP-kinases) and the 21-kDa guanine nucleotide-binding proteins (G1 and G2) which are copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells has been biochemically investigated in vitro. We found that: incubation of the phosphoenzyme (enzyme-bound high-energy phosphate intermediate) of NDP-kinases (F-I and F-II) with one of the nucleoside 5'-diphosphates in the presence of 1 mM Mg2+ or 0.25 mM Ca2+ results in the rapid formation of nucleoside 5'-triphosphates without strict base specificity; GDP on the guanine nucleotide-binding proteins (G1, G2 and recombinant v-rasH p21) acts as a phosphate acceptor for the high-energy phosphates of the phosphoenzyme in the presence of 0.25 mM Ca2+; and [32P]GTP is preferentially formed from the 32P-labelled phosphoenzyme F-I and GDP-bound G1 or GDP-bound recombinant v-rasH p21 protein, even if any other nucleoside 5'-diphosphates are present in the reaction mixture. Although [32P]GTP formed was bound with the guanine nucleotide-binding proteins, it was immediately hydrolyzed by the proteins themselves in the presence of 5 mM Mg2+, but not in the presence of 0.25 mM Ca2+. Available evidence suggests that NDP-kinase may be responsible for the activation of the guanine nucleotide-binding proteins (G1, G2 and p21 proteins) through phosphate transfer by the enzyme.  相似文献   

3.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

4.
Purified guanine nucleotide-binding regulatory proteins, as either the oligomers or the isolated nucleotide-binding alpha subunits, display anomalous kinetics of nucleotide binding. This is due to the presence of tightly bound GDP in these preparations. The dissociation of bound GDP is the rate-limiting step for nucleotide binding. GDP can be removed by chromatography in the presence of 1 M (NH4)2SO4 and 20% glycerol, which yields preparations of G proteins that contain less than 0.1 mol of GDP/mol of guanosine 5'-(gamma-thio)triphosphate (GTP gamma S)-binding site. When the GDP is removed, the binding of GTP gamma S displays kinetics consistent with a bimolecular reaction.  相似文献   

5.
We have utilized Raman difference spectroscopy to investigate hydrogen bonding interactions of the guanine moiety in guanine nucleotides with the binding site of two G proteins, EF-Tu (elongation factor Tu from Escherichia coli) and the c-Harvey ras protein, p21 (the gene product of the human c-H-ras proto-oncogene). Raman spectra of proteins complexed with GDP (guanosine 5' diphosphate), IDP (inosine 5' diphosphate), 6-thio-GDP, and 6-18O-GDP were measured, and the various difference spectra were determined. These were compared to the difference spectra obtained in solution, revealing vibrational features of the nucleotide that are altered upon binding. Specifically, we observed significant frequency shifts in the vibrational modes associated with the 6-keto and 2-amino positions of the guanine group of GDP and IDP that result from hydrogen bonding interactions between these groups and the two proteins. These shifts are interpreted as being proportional to the local energy of interaction (delta H) between the two groups and protein residues at the nucleotide binding site. Consistent with the tight binding between the nucleotides and the two proteins, the shifts indicate that the enthalpic interactions are stronger between these two polar groups and protein than with water. In general, the spectral shifts provide a rationale for the stronger binding of GDP and IDP with p21 compared to EF-Tu. Despite the structural similarity of the binding sites of EF-Tu and p21, the strengths of the observed hydrogen bonds at the 6-keto and 2-amino positions vary substantially, by up to a factor of 2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Lin B  Maddock JR 《FEBS letters》2001,489(1):108-111
The Caulobacter crescentus GTP binding protein CgtA is a member of the Obg/GTP1 subfamily of monomeric GTP binding proteins. In vitro, CgtA displays moderate affinity for both GDP and GTP, and rapid exchange rate constants for either nucleotide. One possible explanation for the observed rapid guanine nucleotide exchange rates is that CgtA is a bimodal protein with a C-terminal GTP binding domain and an N-terminal guanine nucleotide exchange factor (GEF) domain. In this study we demonstrate that although the N-terminus of CgtA is required for function in vivo, this domain plays no significant role in the guanine nucleotide binding, exchange or GTPase activity.  相似文献   

7.
The Caulobacter crescentus CgtA protein is a member of the Obg-GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA specifically bound GTP and GDP but not GMP or ATP. CgtA bound GTP and GDP with moderate affinity at 30 degrees C and displayed equilibrium binding constants of 1.2 and 0.5 microM, respectively, in the presence of Mg(2+). In the absence of Mg(2+), the affinity of CgtA for GTP and GDP was reduced 59- and 6-fold, respectively. N-Methyl-3'-O-anthranoyl (mant)-guanine nucleotide analogs were used to quantify GDP and GTP exchange. Spontaneous dissociation of both GDP and GTP in the presence of 5 to 12 mM Mg(2+) was extremely rapid (k(d) = 1.4 and 1.5 s(-1), respectively), 10(3)- to 10(5)-fold faster than that of the well-characterized eukaryotic Ras-like GTP-binding proteins. The dissociation rate constant of GDP increased sevenfold in the absence of Mg(2+). Finally, there was a low inherent GTPase activity with a single-turnover rate constant of 5.0 x 10(-4) s(-1) corresponding to a half-life of hydrolysis of 23 min. These data clearly demonstrate that the guanine nucleotide binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. Furthermore, these data are consistent with a model whereby the nucleotide occupancy of CgtA is controlled by the intracellular levels of guanine nucleotides.  相似文献   

8.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction, prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex, nucleotide-free ARF1*Sec7 and ARF1*GDP, we suggest that, in addition to forcing nucleotide release, the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus, the Sec7 domain may act as a dual catalyst, facilitating both nucleotide release and conformational switching on ARF proteins.  相似文献   

9.
Mg(2+) ions are essential for guanosine triphosphatase (GTPase) activity and play key roles in guanine nucleotide binding and preserving the structural integrity of GTP-binding proteins. We determined the crystal structure of a small GTPase RHOA complexed with GDP in the absence of Mg(2+) at 2.0-A resolution. Elimination of a Mg(2+) ion induces significant conformational changes in the switch I region that opens up the nucleotide-binding site. Similar structural changes have been observed in the switch regions of Ha-Ras bound to its guanine nucleotide exchange factor, Sos. This RHOA-GDP structure reveals an important regulatory role for Mg(2+) and suggests that guanine nucleotide exchange factor may utilize this feature of switch I to produce an open conformation in GDP/GTP exchange.  相似文献   

10.
The biological functions of ras proteins are controlled by the bound guanine nucleotide GDP or GTP. The GTP-bound conformation is biologically active, and is rapidly deactivated to the GDP-bound conformation through interaction with GAP (GTPase Activating Protein). Most transforming mutants of ras proteins have drastically reduced GTP hydrolysis rates even in the presence of GAP. The crystal structures of the GDP complexes of ras proteins at 2.2 A resolution reveal the detailed interaction between the ras proteins and the GDP molecule. All the currently known transforming mutation positions are clustered around the bound guanine nucleotide molecule. The presumed "effector" region and the GAP recognition region are both highly exposed. No significant structural differences were found between the GDP complexes of normal ras protein and the oncogenic mutant with valine at position 12, except the side-chain of the valine residue. However, comparison with GTP-analog complexes of ras proteins suggests that the valine side-chain may inhibit GTP hydrolysis in two possible ways: (1) interacting directly with the gamma-phosphate and altering its orientation or the conformation of protein residues around the phosphates; and/or (2) preventing either the departure of gamma-phosphate on GTP hydrolysis or the entrance of a nucleophilic group to attack the gamma-phosphate. The structural similarity between ras protein and the bacterial elongation factor Tu suggests that their common structural motif might be conserved for other guanine nucleotide binding proteins.  相似文献   

11.
Comparative molecular modeling has been used to generate several possible structures for the G-domain of chloroplast elongation factor Tu (EF-Tu(chl)) based on the crystallographic data of the homologous E. coli protein. EF-Tu(chl) contains a 10 amino acid insertion not present in the E. coli protein and this region has been modeled based on its predicted secondary structure. The insertion appears to lie on the surface of the protein. Its orientation could not be determined unequivocally but several likely structures for the nucleotide binding domain of EF-Tu(chl) have been developed. The effects of the presence of water in the Mg2+ coordination sphere and of the protonation state of the GDP ligand on the conformation of the guanine nucleotide binding site have been examined. Relative binding constants of several guanine nucleotide analogs for EF-Tu(chl) have been obtained. The interactions between EF-Tu(chl) and GDP predicted to be important by the models that have been developed are discussed in relation to the nucleotide binding properties of this factor and to the interactions proposed to be important in the binding of guanine nucleotides to related proteins.  相似文献   

12.
The guanine nucleotide binding properties of rap1 protein purified from human neutrophils were examined using both the protein kinase A-phosphorylated and the non-phosphorylated forms of the protein. Binding of GTP[S] (guanosine 5'-[gamma-thio]triphosphate) or GDP was found to be slow in the presence of free Mg2+, but very rapid in the absence of Mg2+. The binding of guanine nucleotides was found to correlate with the loss of endogenous nucleotide from the rap1 protein, which was rapid in the absence of Mg2+. The relative affinities of GTP and GDP for the binding site on rap1 were modulated by the presence of Mg2+, with a preferential affinity (approx. 15-fold) for GTP observed only in the absence of this bivalent cation. The dissociation of GDP from rap1 was not affected by the G-protein beta/gamma-subunit complex. Phosphorylation of rap1 in vitro by protein kinase A did not modify any of the observed nucleotide-binding parameters. Furthermore, the ability of a cytosolic rap1 GTPase-activating protein to stimulate neutrophil rap1 GTP hydrolysis was not modified by phosphorylation. These data suggest that the activation of rap in vivo may be regulated by the release of endogenous GDP, but that phosphorylation by protein kinase A does not affect guanine nucleotide binding or hydrolysis.  相似文献   

13.
The Caulobacter crescentus CgtA protein is a member of the Obg/GTP1 subfamily of monomeric GTP-binding proteins. In vitro, CgtA displays moderate affinity for both GDP and GTP and displays rapid exchange rate constants for either nucleotide, indicating that the guanine nucleotide-binding and exchange properties of CgtA are different from those of the well-characterized Ras-like GTP-binding proteins. The Obg/GTP1 proteins share sequence similarity along the putative effector-binding domain. In this study, we examined the functional consequences of altering amino acid residues within this conserved domain, and identified that T193 was critical for CgtA function. The in vitro binding, exchange and GTP hydrolysis of the T192A, T193A and T192AT193A mutant proteins was examined using fluorescent guanine nucleotide analogues (mant-GDP and mant-GTP). Substitution of either T192 and/or T193 for alanine modestly reduced binding to GDP and significantly reduced the binding affinity for GTP. Furthermore, the T193A mutant protein was more severely impaired for binding GTP than the T192A mutant. The T193A mutation appeared to account solely for the impaired GTP binding of the T192AT193A double mutation. This is the first report that demonstrates that a confirmed defect in guanine nucleotide binding and GTP hydrolysis of an Obg-like protein results in the lack of function in vivo.  相似文献   

14.
The activation of heterotrimeric G proteins is accomplished primarily by the guanine nucleotide exchange activity of ligand-bound G protein-coupled receptors. The existence of nonreceptor guanine nucleotide exchange factors for G proteins has also been postulated. Yeast two-hybrid screens with Galpha(o) and Galpha(s) as baits were performed to identify binding partners of these proteins. Two mammalian homologs of the Caenorhabditis elegans protein Ric-8 were identified in these screens: Ric-8A (Ric-8/synembryn) and Ric-8B. Purification and biochemical characterization of recombinant Ric-8A revealed that it is a potent guanine nucleotide exchange factor for a subset of Galpha proteins including Galpha(q), Galpha(i1), and Galpha(o), but not Galpha(s). The mechanism of Ric-8A-mediated guanine nucleotide exchange was elucidated. Ric-8A interacts with GDP-bound Galpha proteins, stimulates release of GDP, and forms a stable nucleotide-free transition state complex with the Galpha protein; this complex dissociates upon binding of GTP to Galpha.  相似文献   

15.
We have analyzed the guanine nucleotides bound to mammalian ras and yeast RAS proteins overexpressed in [32P]orthophosphate-labeled cultures of exponentially growing Saccharomyces cerevisiae cells. Whereas S. cerevisiae RAS1 and RAS2 proteins were immunoprecipitated bound entirely to GDP, mammalian Harvey ras was isolated with GTP and GDP bound in near-equimolar proportions. In a strain overexpressing a RAS2 variant where the RAS unique C-terminal domain was deleted, both GTP and GDP were detected in a ratio of 3:97. Increased amounts of GTP (16-75% of total guanine nucleotide) were observed bound to all ras proteins containing mutations that inhibit GTP hydrolytic activity. Increasing proportions of GTP bound to the various ras proteins correlated with increasing biological potency to bypass cdc25 lethality in yeast.  相似文献   

16.
Polypeptide chain initiation in mammalian systems is regulated at the level of the guanine nucleotide exchange factor (GEF). This multisubunit protein catalyzes the exchange of GDP bound to eukaryotic initiation factor 2 (eIF-2) for GTP. Although various models have been proposed for its mode of action, the exact sequence of events involved in nucleotide exchange is still uncertain. We have studied this reaction by three different experimental techniques: (a) membrane filtration assays to measure the release of [3H]GDP from the eIF-2.[3H]GDP binary complex, (b) changes in the steady-state polarization of fluorescamine-GDP during the nucleotide exchange reaction, and (c) sucrose gradient analysis of the total reaction. The results obtained do not support the reaction as written: eIF-2.GDP + GEF in equilibrium eIF-2.GEF + GDP. The addition of GEF alone does not result in the displacement of eIF-2-bound GDP. The release of bound GDP is dependent on the presence of both GTP and GEF, and this argues against the possibility of a substituted enzyme (ping-pong) mechanism for the guanine nucleotide exchange reaction. An important finding of the present study is the observation that GTP binds to GEF. The Kd value of 4 microM for GTP was estimated (a) by the extent of quenching of tryptophan fluorescence of GEF in the presence of GTP and (b) by the binding of [3H]GTP to GEF as measured on nitrocellulose membranes. The GEF-dependent release of eIF-2-bound GDP was studied at several constant concentrations of one substrate (GTP or eIF-2.GDP) while varying the second substrate concentration, and the results were then plotted according to the Lineweaver-Burk method. Taken together, the results of GTP and eIF-2.GDP binding to GEF and the pattern of the double-reciprocal plots strongly suggest that the guanine nucleotide exchange reaction follows a sequential mechanism.  相似文献   

17.
We have recorded the circular dichroism spectra of the cellular and the viral H-ras gene products both in the absence and in the presence of guanine nucleotides and analyzed these spectra in terms of the secondary structure composition of these proteins. It is shown that the GTP complex of the ras proteins has a different secondary structure composition than the GDP complex and, furthermore, that there are differences in the secondary structure of the viral ras protein and the cellular ras protein. We have also recorded and analyzed the circular dichroism spectrum of the isolated guanine nucleotide binding domain of the Escherichia coli elongation factor Tu (EF-Tu), which has been considered as a model for the tertiary structure of the ras proteins [McCormick, F., Clark, B. F. C., LaCour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, L., & Nyborg, J. (1985) Science (Washington, D.C.) 230, 78-82]. Our data show that the guanine nucleotide binding domain of EF-Tu (30% alpha-helix and 16% beta-pleated sheet for the GDP complex) has quite a different secondary structure composition than the ras proteins (e.g., the cellular ras protein has 47% alpha-helix and 22% beta-pleated sheet for the GDP complex), indicating that the protein core comprising the guanine nucleotide binding site might be similar but that major structural differences must exist at the portion outside this core. Normal and transforming ras proteins also differ slightly in their hydrodynamic properties as shown by sedimentation velocity runs in the analytical ultracentrifuge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.  相似文献   

19.
The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.  相似文献   

20.
Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号