首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Human low density lipoprotein (LDL), radiolabeled in the cholesteryl ester moiety, was injected into estrogen-treated and -untreated rats. The hepatic and extrahepatic distribution and biliary secretion of [3H]cholesteryl esters were determined at various times after injection. In order to follow the intrahepatic metabolism of the cholesteryl esters of LDL in vivo, the liver was subfractioned into parenchymal and Kupffer cells by a low temperature cell isolation procedure. In control rats, the LDL cholesteryl esters were mainly taken up by the Kupffer cells. After uptake, the [3H]cholesteryl esters are rapidly hydrolyzed, followed by release of [3H]cholesterol from the cells to other sites in the body. Up to 24 h after injection of LDL, only 9% of the radioactivity appeared in the bile, whereas after 72 h, this value was 30%. Hepatic and especially the parenchymal cell uptake of [3H]cholesteryl esters from LDL was strongly increased upon 17 alpha-ethinylestradiol treatment (3 days, 5 mg/kg). After rapid hydrolysis of the esters, [3H]cholesterol was both secreted into bile (28% of the injected dose in the first 24 h) as well as stored inside the cells as re-esterified cholesterol ester. It is concluded that uptake of human LDL by the liver in untreated rats is not efficiently coupled to biliary secretion of cholesterol (derivatives), which might be due to the anatomical localization of the principal uptake site, the Kupffer cells. In contrast, uptake of LDL cholesterol ester by liver hepatocytes is tightly coupled to bile excretion. The Kupffer cell uptake of LDL might be necessary in order to convert LDL cholesterol (esters) into a less toxic form. This activity can be functional in animals with low receptor activity on hepatocytes, as observed in untreated rats, or after diet-induced down-regulation of hepatocyte LDL receptors in other animals.  相似文献   

2.
3.
Whether hepatocytes can convert into biliary epithelial cells (BECs) during biliary injury is much debated. To test this concept, we traced the fate of genetically labeled [dipeptidyl peptidase IV (DPPIV)-positive] hepatocytes in hepatocyte transplantation model following acute hepato-biliary injury induced by 4,4’-methylene-dianiline (DAPM) and D-galactosamine (DAPM+D-gal) and in DPPIV-chimeric liver model subjected to acute (DAPM+D-gal) or chronic biliary injury caused by DAPM and bile duct ligation (DAPM+BDL). In both models before biliary injury, BECs are uniformly DPPIV-deficient and proliferation of DPPIV-deficient hepatocytes is restricted by retrorsine. We found that mature hepatocytes underwent a stepwise conversion into BECs after biliary injury. In the hepatocyte transplantation model, DPPIV-positive hepatocytes entrapped periportally proliferated, and formed two-layered plates along portal veins. Within the two-layered plates, the hepatocytes gradually lost their hepatocytic identity, proceeded through an intermediate state, acquired a biliary phenotype, and subsequently formed bile ducts along the hilum-to-periphery axis. In DPPIV-chimeric liver model, periportal hepatocytes expressing hepatocyte nuclear factor-1β (HNF-1β) were exclusively DPPIV-positive and were in continuity to DPPIV-positives bile ducts. Inhibition of hepatocyte proliferation by additional doses of retrorsine in DPPIV-chimeric livers prevented the appearance of DPPIV-positive BECs after biliary injury. Moreover, enriched DPPIV-positive BEC/hepatic oval cell transplantation produced DPPIV-positive BECs or bile ducts in unexpectedly low frequency and in mid-lobular regions. These results together suggest that mature hepatocytes but not contaminating BECs/hepatic oval cells are the sources of periportal DPPIV-positive BECs. We conclude that mature hepatocytes contribute to biliary regeneration in the environment of acute and chronic biliary injury through a ductal plate configuration without the need of exogenously genetic or epigenetic manipulation.  相似文献   

4.
Breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette transport protein that is expressed in several organs including the liver. Previous studies have shown that ABC transport proteins play an important pathophysiological role in several liver diseases. However, to date, expression pattern and possible role of BCRP in human liver diseases and animal models have not been studied in detail. Here we investigated the expression pattern of BCRP in normal liver, chronic parenchymal and biliary human liver diseases, and parallel in different rat models of liver diseases. Expression was studied by immunohistochemistry and additionally by RT-PCR analysis in Thy-1-positive rat oval cells. Bile ducts, hepatic progenitor cells, reactive bile ductules, and blood vessel endothelium were immunoreactive for BCRP in normal liver and all types of human liver diseases and in rat models. BCRP was expressed by the canalicular membrane of hepatocytes in normal and diseased human liver, but never in rat liver. Remarkably, there was also expression of BCRP at the basolateral pole of human hepatocytes, and this was most pronounced in chronic biliary diseases. In conclusion, BCRP positivity in the progenitor cells/reactive ductules could contribute to the resistance of these cells to cytotoxic agents and xenotoxins. Basolateral hepatocytic expression in chronic biliary diseases may be an adaptive mechanism to pump bile constituents back into the sinusoidal blood. Strong differences between human and rat liver must be taken into account in future studies with animal models.  相似文献   

5.
Proteasome inhibition has recently been demonstrated to inhibit hepatic fibrogenesis in the bile duct-ligated (BDL) mouse by blocking stellate cell NF-kappaB activation. The effect of proteasome inhibition on liver injury, however, is unclear. Our aims were to assess the effect of the proteasome inhibitor bortezomib on liver injury in the BDL mouse. Liver injury was assessed in 7-day BDL mice treated with a single dose of bortezomib on day 4 after bile duct ligation. Despite NF-kappaB inhibition by bortezomib, liver injury and hepatocyte apoptosis were reduced in treated BDL mice. The antiapoptotic effect of bortezomib was likely mediated by an increase in hepatic cellular FLICE inhibitory protein (c-FLIP) levels, a potent antiapoptotic protein. Unexpectedly, numerous mitotic hepatocytes were observed in the bortezomib-treated BDL mice liver specimens. Consistent with this observation, PCNA immunoreactivity and cyclin A protein expression were also increased with bortezomib treatment. Bortezomib therapy was also associated with a decrease in numbers and activation of Kupffer cells/macrophages. In conclusion, these data suggest that the proteasome inhibitor bortezomib reduces hepatocyte injury in the BDL mouse by mechanisms associated with a reduction in hepatocyte apoptosis, a decrease in Kupffer cell/macrophage number and activation, and increased hepatocyte proliferation.  相似文献   

6.
7.
Previous studies suggested endotoxin, derived from the intestine through the portal blood to the liver, was predominantly metabolized by Kupffer cells. In the present study, fluorescent-labeled endotoxin injected into the rat portal vein was demonstrated not only in Kupffer cells but also in hepatocytes. Furthermore a great amount of labeled endotoxin was recovered in bile. In the livers of patients with primary biliary cirrhosis (PBC), immunohistochemistry demonstrated significant retention of endotoxin in the biliary epithelial cells, and treatment with ursodeoxycholic acid significantly reduced the retention in those cells. The study for detection of apoptosis demonstrated increased rates of apoptosis in hepatocytes and biliary epithelial cells in PBC liver, and the rate of apoptosis in biliary epithelial cells was significantly reduced after treatment with ursodeoxycholic acid. Immunohistochemistry in PBC liver demonstrated significant reduction of fluorescence intensity for a 7H6 antigen in biliary epithelial cells, indicating the increased paracellular permeability of bile ducts, because cellular immunolocalization of that antigen has been shown to be inversely correlated with the paracellular permeability of the tight junction. These results suggest that, in biliary epithelial cells, retention of endotoxin, increased apoptosis, and increased permeability of tight junctions may be involved in the pathogenesis of PBC.  相似文献   

8.
The aim of this study is to elucidate the effects of Scutellaria baicalensis Georgi (SbG) extract and its constituents on macrophage-hepatocyte interaction in primary cultures. By using trans-well primary Kupffer cell culture or conditioned medium (CM) from murine macrophage RAW264.7 cell line (RAW cells), effects of SbG on hepatocyte growth were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide and trypan blue exclusion assay. Cytokine production, antibody-neutralization studies, and molecular mechanisms of transforming growth factor (TGF)-beta1 gene expression were elucidated on SbG-treated RAW264.7 cells. In addition, recombinant human TGF-beta1 (r-human TGF-beta1) was added to elucidate the mechanisms of SbG effects on cultured hepatocytes. Immunohistochemistry using anti-NF-kappaB antibody was used to determine the possible signal transduction pathways in primary hepatocyte culture. The results showed that SbG stimulated the proliferation of cultured hepatocytes, possibly through NF-kappaB, but not of Toll-like receptor 4 activation; whereas SbG-RAW-CM and SbG in trans-well significantly suppressed the proliferation of hepatocytes. Antibody-neutralization studies revealed that TGF-beta1 was the main antimitotic cytokine in SbG-treated RAW cells CM. The growth stimulation effect of SbG on cultured hepatocytes was inhibited by exogenous administration of r-human TGF-beta1. Furthermore, SbG induced NF-kB translocation into the nuclei of cultured cells. In the RAW264.7 line, SbG and baicalin stimulated TGF-beta1 gene expression via NF-kappaB and protein kinase C activation. We conclude that SbG stimulates hepatocyte growth via activation of the NF-kappaB pathway and induces TGF-beta1 gene expression through the Kupffer cell-hepatocyte interaction, which subsequently results in the inhibition of SbG-stimulated hepatocyte growth.  相似文献   

9.
The development of alcoholic liver diseases depends on the ability of hepatocyte to proliferate and differentiate in the case of alcohol-induced injury. Our previous work showed an inhibitory effect of alcohol on hepatocyte proliferation. However, the effect of alcohol on hepatocyte differentiation has not yet been precisely characterized. In the present study, we evaluated the effect of alcohol on hepatocyte differentiation in relationship with changes of iron metabolism in HepaRG cells. This unique bipotent human cell line can differentiate into hepatocytes and biliary epithelial cells, paralleling liver development. Results showed that alcohol reduced cell viability, total protein level and enhanced hepatic enzymes leakage in differentiated HepaRG cells. Moreover, it caused cell enlargement, decreased number of hepatocyte and expression of C/EBPα as well as bile canaliculi F-actin. Alcohol increased expression of hepatic cell-specific markers and alcohol-metabolizing enzymes (ADH2, CYP2E1). This was associated with a lipid peroxidation and an iron excess expressed by an increase in total iron content, ferritin level, iron uptake as well as an overexpression of genes involved in iron transport and storage. Alcohol-induced hepatoxicity was amplified by exogenous iron via exceeding iron overload. Taken together, our data demonstrate that in differentiated hepatocytes, alcohol reduces proliferation while increasing expression of hepatic cell-specific markers. Moreover, iron overload could be one of the underlying mechanisms of effect of alcohol on the whole differentiation process of hepatocytes.  相似文献   

10.
11.
Abstract. The ability of the liver to regenerate after parenchymal damage is usually accomplished by the ephemeral entry of normally proliferatively quiescent (G0) hepatocytes into the cell cycle. However, when hepatocyte regeneration is defective, arborizing ductules which are continuous with the biliary tree, proliferate and migrate into the surrounding parenchyma. In man these biliary cells have variously been referred to as ductular structures, neoductules and neocholangioles, and have been observed in many forms of chronic liver disease, including cancer. In experimental animals similar ductal cells are usually called oval cells, and their association with defective regeneration has led to the belief that these cells represent a progenitor cell population. Oval cells are thought to take over the burden of regenerative growth after substantial hepatocyte loss, suggesting that they are the progeny of facultative stem cells. The liver is not, however, generally considered as a stem cellfed hierarchy, although this is disputed by others. Despite this, the subject of oval cells has aroused intense interest as these cells may represent a target population for hepatic carcinogens, and they may be useful vehicles for ex vivo gene therapy. This review proposes that the liver does harbour stem cells which are located throughout the biliary epithelium, and that oval cells represent the progeny of these stem cells and function as an amplification compartment for the generation of ‘new’hepatocytes. This is a conditional process which only occurs when the regenerative capacity of hepatocytes is overwhelmed and thus, unlike the intestinal epithelium, the liver is not behaving as a classical continually renewing stem cell-fed lineage. We focus on the biliary network, not merely as a conduit for bile, but also as a cell compartment with the potential to proliferate under appropriate conditions and give rise to fully differentiated hepatocytes and other cell types.  相似文献   

12.
The first series of in vivo experiments were designed to investigate the effects of monocytic macrophages (MM phi) stimulation by zymosan in cholesterol-fed rats. We found that the MM phi stimulation significantly decreased plasma very-low-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol but not high-density lipoprotein-cholesterol. The hepatic and aortic cholesterol levels were also significantly decreased; meanwhile, the biliary total bile acid and fecal sterol excretion were significantly enhanced. These results were beneficial to the prevention and regression of atherosclerosis. The second series of in vitro experiments led to the discovery that zymosan did not have effect on HDL and LDL binding, uptake and degradation of hepatic parenchymal and nonparenchymal cells isolated from normal rats, but did have significant effects on those isolated from cholesterol-fed rats. The experiments of Kupffer cells modulating hepatocytes also demonstrated that hepatocyte HDL receptor activity was significantly enhanced by conditioned medium from acetylated LDL plus zymosan added to Kupffer cells. Bmax of 125I-labeled HDL specific binding was increased from 237.8 to 295.2 ng/mg cell protein. The Ka value was not affected, indicating that there might be an increment in receptor number, but not receptor affinity. Cholesterol-loaded zymosan-stimulated Kupffer cells might secrete a soluble mediator affecting hepatocyte HDL receptor activity. Zymosan and other MM phi-stimulating reagents are promising in the exploration of a new approach for prevention and treatment of hypercholesterolemia and atherosclerosis.  相似文献   

13.
CCl(4) cirrhotic rat liver exhibits a hyperresponse to the alpha(1)-adrenergic agonist methoxamine (Mtx) that is associated with enhanced thromboxane A(2) (TXA(2)) production and is abrogated by indomethacin. To further elucidate the molecular mechanisms involved in the hyperresponse to vasoconstrictors, portal perfusion pressure dose-response curves to Mtx were performed in CCl(4) cirrhotic rats livers after preincubation with vehicle, the cyclooxygenase (COX)-1 selective inhibitor SC-560, and the COX-2 selective inhibitor SC-236. TXA(2) production was determined in samples of the perfusate. COX-1 expression was analyzed and quantified in hepatocytes, Kupffer cells, sinusoidal endothelial cells (SEC), and hepatic stellate cells (HSC) isolated from control and cirrhotic rat livers by double-immunofluorescence staining, with specific markers for each population using flow cytometry or Western blot analysis. COX-1 protein levels were not significantly increased in cirrhotic livers, but COX-2 protein expression was increased. COX-1 inhibition, but not COX-2, significantly attenuated the response to Mtx and prevented the increased production of TXA(2). Cirrhotic livers showed an increased expression of COX-1 in SEC and reduced expression in HSC compared with control livers, whereas COX-1 was similarly distributed in Kupffer cells. Despite abundant hepatic COX-2 expression, the increased response to Mtx of cirrhotic livers is mainly dependent of COX-1. Upregulation of COX-1 in cirrhotic SEC may be responsible for the hyperesponse to Mtx.  相似文献   

14.
Hepatomegaly is a sign of many liver disorders. To identify zebrafish mutants to serve as models for hepatic pathologies, we screened for hepatomegaly at day 5 of embryogenesis in 297 zebrafish lines bearing mutations in genes that are essential for embryonic development. Seven mutants were identified, and three have phenotypes resembling different liver diseases. Mutation of the class C vacuolar protein sorting gene vps18 results in hepatomegaly associated with large, vesicle-filled hepatocytes, which we attribute to the failure of endosomal-lysosomal trafficking. Additionally, these mutants develop defects in the bile canaliculi and have marked biliary paucity, suggesting that vps18 also functions to traffic vesicles to the hepatocyte apical membrane and may play a role in the development of the intrahepatic biliary tree. Similar findings have been reported for individuals with arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome, which is due to mutation of another class C vps gene. A second mutant, resulting from disruption of the tumor suppressor gene nf2, develops extrahepatic choledochal cysts in the common bile duct, suggesting that this gene regulates division of biliary cells during development and that nf2 may play a role in the hyperplastic tendencies observed in biliary cells in individuals with choledochal cysts. The third mutant is in the novel gene foie gras, which develops large, lipid-filled hepatocytes, resembling those in individuals with fatty liver disease. These mutants illustrate the utility of zebrafish as a model for studying liver development and disease, and provide valuable tools for investigating the molecular pathogenesis of congenital biliary disorders and fatty liver disease.  相似文献   

15.
L Ia Shipova  A I Gusev 《Ontogenez》1976,7(4):392-396
The localization of alpha-fetoprotein in the liver of embryos and newborn Wistar rats was determined by the method of fluorescent antibodies. This protein was found in the cytoplasm of some hepatocytes, endothelium of blood vessels and erythroid blood cells of embryos and new born rats. It was never found in the blood-forming and Kupffer cells of the liver, as well as in the epithelium of bile ducts. The hepatocytes containing this protein were located in the liver lobes near the central veins. Their number and the intensity of fluorescence decreased with the age of animals.  相似文献   

16.
Degeneration of all bile canaliculi takes place in the liver of the sea lamprey, Petromyzon marinus, during metamorphosis. Disintegration of microvilli is observed during earlier stages, and membranous debris ultimately accumulates within the canalicular lumina. Complete occlusion of the lumina and disorganization of junctional complexes is followed by a complete loss of the exocrine biliary pole of hepatocytes and a reorganization of these cells into solid cords. An increase in the size and number of acid phosphatase-containing cytoplasmic bodies coincides with the events of canalicular degeneration. These secondary lysosomes apparently participate in some manner in the isolation and disposal of iron and other bile constituents which no longer can be excreted in bile canaliculi. The loss of the exocrine biliary pole of hepatocytes is concomitant with vascular disturbances in the form of disordered arrangements of sinusoidal endothelial cells and an increase in the population of activated Kupffer cells involved in erythrophagocytosis. The significance of the shift in functional organization of the liver in adult lampreys is discussed in relation to physiological changes in this organism and to human hepatic cholestasis, for which this organism is a potentially valuable experimental model.  相似文献   

17.
Cell transplantation is a potential therapy for acquired or inherited liver diseases. Donor-derived hepatocytes (DDH) have been found in humans and mice after bone marrow transplantation (BMT) but with highly variable frequencies in different disease models. To test the effect of liver repopulation after BMT in inherited cholestatic liver diseases, spgp (sister of P-glycoprotein, or bile salt export pump, abcb11) knockout mice, a model for human progressive intrahepatic cholestasis type 2 with defects in excreting bile salts across the hepatocyte canalicular membrane, were transplanted with bone marrow cells from enhanced green fluorescent protein (EGFP) transgenic donor mice after lethal irradiation. One to 6 months later, scattered EGFP-positive DDHs with positive spgp staining were observed in the liver. These hepatocytes had been incorporated into hepatic plates and stained positively with hepatocyte-specific marker albumin. RT-PCR for the spgp gene revealed positive expression in the liver of sgsp knockout mice that had received the transplant. Bile acid analysis of bile samples showed that these mice also had higher levels of total biliary bile acid and taurocholic acid concentration than knockout mice without transplantation, indicating that BMT partially improved biliary bile acid secretion. Our results indicate that bone marrow cells could serve as a potential source for restoration of hepatic functions in chronic metabolic liver disease.  相似文献   

18.
The effect of COX (cyclo-oxygenase)-2-dependent PGs (prostaglandins) in acute liver injury has been investigated in transgenic mice that express human COX-2 in hepatocytes. We have used three well-established models of liver injury: in LPS (lipopolysaccharide) injury in D-GalN (D-galactosamine)-preconditioned mice; in the hepatitis induced by ConA (concanavalin A); and in the proliferation of hepatocytes in regenerating liver after PH (partial hepatectomy). The results from the present study demonstrate that PG synthesis in hepatocytes decreases the susceptibility to LPS/D-GalN or ConA-induced liver injury as deduced by significantly lower levels of the pro-inflammatory profile and plasmatic aminotransferases in transgenic mice, an effect suppressed by COX-2-selective inhibitors. These Tg (transgenic) animals express higher levels of anti-apoptotic proteins and exhibit activation of proteins implicated in cell survival, such as Akt and AMP kinase after injury. The resistance to LPS/D-GalN-induced liver apoptosis involves an impairment of procaspase 3 and 8 activation. Protection against ConA-induced injury implies a significant reduction in necrosis. Moreover, hepatocyte commitment to start replication is anticipated in Tg mice after PH, due to the expression of PCNA (proliferating cell nuclear antigen), cyclin D1 and E. These results show, in a genetic model, that tissue-specific COX-2-dependent PGs exert an efficient protection against acute liver injury by an antiapoptotic/antinecrotic effect and by accelerated early hepatocyte proliferation.  相似文献   

19.

Backgrounds and Aims

When hepatocyte proliferation is impaired, liver regeneration proceeds from the division of non parenchymal hepatocyte progenitors. Oval cells and Small Hepatocyte-like Progenitor Cells (SHPCs) represent the two most studied examples of such epithelial cells with putative stem cell capacity. In the present study we wished to compare the origin of SHPCs proliferating after retrorsine administration to the one of oval cells observed after 2-Acetyl-Amino fluorene (2-AAF) treatment.

Methodology/Principal Findings

We used retroviral-mediated nlslacZ genetic labeling of dividing cells to study the fate of cells in the liver. Labeling was performed either in adult rats before treatment or in newborn animals. Labeled cells were identified and characterised by immunohistochemistry. In adult-labeled animals, labeling was restricted to mature hepatocytes. Retrorsine treatment did not modify the overall number of labeled cells in the liver whereas after 2-AAF administration unlabeled oval cells were recorded and the total number of labeled cells decreased significantly. When labeling was performed in newborn rats, results after retrorsine administration were identical to those obtained in adult-labeled rats. In contrast, in the 2-AAF regimen numerous labeled oval cells were present and were able to generate new labeled hepatocytes. Furthermore, we also observed labeled biliary tracts in 2-AAF treated rats.

Conclusions

Our results srongly suggest that SHPCs are derived from hepatocytes and we confirm that SHPCs and oval cells do not share the same origin. We also show that hepatic progenitors are labeled in newborn rats suggesting future directions for in vivo lineage studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号