首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein tyrosine phosphorylation controls many aspects of signaling in multicellular organisms. One of the major consequences of tyrosine phosphorylation is the creation of binding sites for proteins containing Src homology 2 (SH2) domains. To profile the global tyrosine phosphorylation state of the cell, we have developed proteomic binding assays encompassing nearly the full complement of human SH2 domains. Here we provide a global view of SH2 domain binding to cellular proteins based on large-scale far-western analyses. We also use reverse-phase protein arrays to generate comprehensive, quantitative SH2 binding profiles for phosphopeptides, recombinant proteins, and entire proteomes. As an example, we profiled the adhesion-dependent SH2 binding interactions in fibroblasts and identified specific focal adhesion complex proteins whose tyrosine phosphorylation and binding to SH2 domains are modulated by adhesion. These results demonstrate that high-throughput comprehensive SH2 profiling provides valuable mechanistic insights into tyrosine kinase signaling pathways.  相似文献   

2.
Many cellular signaling proteins contain SH3 (Src homology 3) domains that mediate protein interactions via specific proline-containing peptides. Unlike SH2 domains, whose interactions with tyrosine-containing peptides are promoted by phosphorylation of the SH2 binding site, the regulatory mechanism for SH3 interactions is unclear. p120 RasGAP (GTPase-activating protein), which contains an SH3 domain flanked by two SH2 domains, forms an abundant SH2-mediated complex with p190 RhoGAP in cells expressing activated tyrosine kinases. We have identified two closely linked tyrosine-containing peptides in p190 that bind simultaneously to the RasGAP SH2 domains upon p190 phosphorylation. This interaction is expected to bring the two SH2 domains into close proximity. Consequently, RasGAP undergoes a conformational change that results in a 100-fold increase in the accessibility of the target binding surface of its SH3 domain. These results indicate that the tandem arrangement of SH2 and SH3 domains found in a variety of cellular signaling proteins can provide a conformational mechanism for regulating SH3-dependent interactions through tyrosine phosphorylation. In addition, it appears that the role of p190 in the RasGAP signaling complex is to promote additional protein interactions with RasGAP via its SH3 domain.  相似文献   

3.
Integrin-mediated cell adhesion triggers intracellular signaling cascades, including tyrosine phosphorylation of intracellular proteins. Among these are the focal adhesion proteins p130cas (Cas) and focal adhesion kinase (FAK). Here we identify the kinase(s) mediating integrin-induced Cas phosphorylation and characterize protein-protein interactions mediated by phosphorylated Cas. We found that expression of a constitutively active FAK in fibroblasts results in a consecutive tyrosine phosphorylation of Cas. This effect required the autophosphorylation site of FAK, which is a binding site for Src family kinases. Integrin-mediated phosphorylation of Cas was not, however, compromised in fibroblasts lacking FAK. In contrast, adhesion-induced tyrosine phosphorylation of Cas was reduced in cells lacking Src, whereas enhanced phosphorylation of Cas was observed Csk- cells, in which Src kinases are activated. These results suggest that Src kinases are responsible for the integrin-mediated tyrosine phosphorylation of Cas. FAK seems not to be necessary for phosphorylation of Cas, but when autophosphorylated, FAK may recruit Src family kinases to phosphorylate Cas. Cas was found to form complexes with Src homology 2 (SH2) domain-containing signaling molecules, such as the SH2/SH3 adapter protein Crk, following integrin-induced tyrosine phosphorylation. Guanine nucleotide exchange factors C3G and Sos were found in the Cas-Crk complex upon integrin ligand binding. These observations suggest that Cas serves as a docking protein and may transduce signals to downstream signaling pathways following integrin-mediated cell adhesion.  相似文献   

4.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

5.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Syk protein tyrosine kinase is essential for immune system development and function [1]and for the maintenance of vascular integrity [2,3]. In leukocytes, Syk is activated by binding to diphosphorylated immune receptor tyrosine-based activation motifs (pITAMs)[1]. Syk can also be activated by integrin adhesion receptors [4,5], but the mechanism of its activation is unknown. Here we report a novel mechanism for Syk's recruitment and activation, which requires that Syk bind to the integrin beta3 cytoplasmic tail. We found that both Syk and the related kinase ZAP-70 bound the beta3 cytoplasmic tail through their tandem SH2 domains. However, unlike Syk binding to pITAMs, this interaction was independent of tyrosine phosphorylation and of the phosphotyrosine binding function of Syk's tandem SH2 domains. Deletion of the four C-terminal residues of the beta3 cytoplasmic tail [beta3(759X)] decreased Syk binding and disrupted its physical association with integrin alphaIIbbeta3. Furthermore, cells expressing alphaIIbbeta3(759X) failed to exhibit Syk activation or lamellipodia formation upon cell adhesion to the alphaIIbbeta3 ligand, fibrinogen. In contrast, FAK phosphorylation and focal adhesion formation were unimpaired by this mutation. Thus, the direct binding of Syk kinase to the integrin beta3 cytoplasmic tail is a novel and functionally significant mechanism for the regulation of this important non-receptor tyrosine kinase.  相似文献   

7.
The mechanism of outside-in signaling by integrins parallels that for growth factor receptors. In both pathways, phosphorylation of a cytoplasmic segment on tyrosine generates a docking site for proteins containing Src homology 2 (SH2) and phosphotyrosine binding domains. We recently observed that phosphorylation of a threonine (Thr-753), six amino acids proximal to tyrosine 759 in beta(3) of the platelet specific integrin alpha(IIb)beta(3), inhibits outside-in signaling through this receptor. We hypothesized that the presence of phosphothreonine 753 either renders beta(3) a poor substrate for tyrosine kinases or inhibits the docking capabilities of the tyrosyl-phosphorylated form of beta(3.) The first alternative was tested by comparing the phosphorylation of beta(3) model peptides by the tyrosine kinase pp60(c-src) and we found that the presence of a phosphate group on a residue corresponding to Thr-753 did not detectably alter the kinetics of tyrosine phosphorylation. However, the presence of phosphate on this threonine inhibited the binding of Shc to tyrosyl-phosphorylated beta(3) peptide. The inhibitory effect of the phosphate group could be mimicked by substituting an aspartic acid for Thr-753, suggesting that a negative charge at this position modulates the binding of Shc and possibly other phosphotyrosine binding domain- and SH2-containing proteins. A survey of several protein kinases revealed that Thr-753 was avidly phosphorylated by PDK1 and Akt/PKB in vitro. These observations suggest that activation of PDK1 and/or Akt/PKB in platelets may modulate the binding activity and/or specificity of beta(3) for signaling molecules.  相似文献   

8.
SRC family kinases play essential roles in a variety of cellular functions, including proliferation, survival, differentiation, and apoptosis. The activities of these kinases are regulated by intramolecular interactions and by heterologous binding partners that modulate the transition between active and inactive structural conformations. p130(CAS) (CAS) binds directly to both the SH2 and SH3 domains of c-SRC and therefore has the potential to structurally alter and activate this kinase. In this report, we demonstrate that overexpression of full-length CAS in COS-1 cells induces c-SRC-dependent tyrosine phosphorylation of multiple endogenous cellular proteins. A carboxy-terminal fragment of CAS (CAS-CT), which contains the c-SRC binding site, was sufficient to induce c-SRC-dependent protein tyrosine kinase activity, as measured by tyrosine phosphorylation of cortactin, paxillin, and, to a lesser extent, focal adhesion kinase. A single amino acid substitution located in the binding site for the SRC SH3 domain of CAS-CT disrupted CAS-CT's interaction with c-SRC and inhibited its ability to induce tyrosine phosphorylation of cortactin and paxillin. Murine C3H10T1/2 fibroblasts that expressed elevated levels of tyrosine phosphorylated CAS and c-SRC-CAS complexes exhibited an enhanced ability to form colonies in soft agar and to proliferate in the absence of serum or growth factors. CAS-CT fully substituted for CAS in mediating growth in soft agar but was less effective in promoting serum-independent growth. These data suggest that CAS plays an important role in regulating specific signaling pathways governing cell growth and/or survival, in part through its ability to interact with and modulate the activity of c-SRC.  相似文献   

9.
The Crk and Crk-like (CrkL) adaptor proteins play important roles in numerous signaling pathways, bridging tyrosine kinase substrates to downstream signaling effectors by virtue of their phosphotyrosine-binding SH2 domains and their effector-binding SH3 domains. Critical to understanding the diverse roles of Crk/CrkL is the identification of tissue- and signal-specific tyrosine phosphorylated substrates to which they are recruited and the tissue-specific effector proteins they chaperone into signaling complexes. Crk and CrkL are known biochemically and genetically to be essential mediators of Reelin/Disabled-1 (Dab1) signaling, which governs proper mammalian brain development. Multimeric Reelin clusters its receptors as well as the receptor-bound intracellular scaffolding protein Dab1. Clustering induces Fyn/Src-dependent Dab1 tyrosine phosphorylation, which recruits Crk/CrkL and SH3-bound effectors. Previously, 21 Crk/CrkL-SH3 binding proteins were identified from diverse cell types. We present here the proteomic identification of 101 CrkL-SH3 binding proteins from embryonic murine brain. The identified proteins are enriched in the Crk/CrkL-SH3 binding motif and signaling activities regulating cell adhesion and motility. These results suggest Reelin-induced Dab1 tyrosine phosphorylation may generate a multifaceted signaling scaffold containing a rich array of Crk/CrkL-SH3 binding effectors and may explain a growing diversity of cellular activities suggested to be influenced by Reelin/Dab1 signaling.  相似文献   

10.
《The Journal of cell biology》1994,126(5):1299-1309
We describe a novel approach to study tyrosine-phosphorylated (PY) integrins in cells transformed by virally encoded tyrosine kinases. We have synthesized a peptide (PY beta 1 peptide) that represents a portion of the cytoplasmic domain of the beta 1 integrin subunit and is phosphorylated on the tyrosine residue known to be the target of oncogenic tyrosine kinases. Antibodies prepared against the PY beta 1 peptide, after removal of cross-reacting antibodies by absorption and affinity purification, recognized the PY beta 1 peptide and the tyrosine-phosphorylated form of the intact beta 1 subunit, but did not bind the nonphosphorylated beta 1 peptide, the nonphosphorylated beta 1 subunit or other unrelated tyrosine-phosphorylated proteins. The anti- PY beta 1 antibodies labeled the podosomes of Rous sarcoma virus- transformed fibroblasts, but did not detectably stain nontransformed fibroblasts. The localization of the tyrosine phosphorylated beta 1 subunits appeared distinct from that of the beta 1 subunit. Adhesion plaques were stained by the anti-beta 1 subunit antibodies in Rous sarcoma virus-transformed fibroblasts plated on fibronectin, whereas neither podosomes nor adhesion plaques were labeled on vitronectin or on uncoated plates. Anti-phosphotyrosine antibodies labeled podosomes, adhesion plaques and cell-cell boundaries regardless of the substratum. One of the SH2 domains of the p85 subunit of phosphatidylinositol-3- kinase bound to the PY beta 1 peptide, but not to the non- phosphorylated beta 1 cytoplasmic peptide. Other SH2 domains did not bind to the PY beta 1 peptide. These results show that the phosphorylated form of the beta 1 integrin subunit is detected in a different subcellular localization than the nonphosphorylated form and suggest that the phosphorylation on tyrosine of the beta 1 subunit cytoplasmic domain may affect cellular signaling pathways.  相似文献   

11.
The focal adhesion kinase (FAK), a protein-tyrosine kinase (PTK), associates with integrin receptors and is activated by cell binding to extracellular matrix proteins, such as fibronectin (FN). FAK autophosphorylation at Tyr-397 promotes Src homology 2 (SH2) domain binding of Src family PTKs, and c-Src phosphorylation of FAK at Tyr-925 creates an SH2 binding site for the Grb2 SH2-SH3 adaptor protein. FN-stimulated Grb2 binding to FAK may facilitate intracellular signaling to targets such as ERK2-mitogen-activated protein kinase. We examined FN-stimulated signaling to ERK2 and found that ERK2 activation was reduced 10-fold in Src- fibroblasts, compared to that of Src- fibroblasts stably reexpressing wild-type c-Src. FN-stimulated FAK phosphotyrosine (P.Tyr) and Grb2 binding to FAK were reduced, whereas the tyrosine phosphorylation of another signaling protein, p130cas, was not detected in the Src- cells. Stable expression of residues 1 to 298 of Src (Src 1-298, which encompass the SH3 and SH2 domains of c-Src) in the Src- cells blocked Grb2 binding to FAK; but surprisingly, Src 1-298 expression also resulted in elevated p130cas P.Tyr levels and a two- to threefold increase in FN-stimulated ERK2 activity compared to levels in Src- cells. Src 1-298 bound to both FAK and p130cas and promoted FAK association with p130cas in vivo. FAK was observed to phosphorylate p130cas in vitro and could thus phosphorylate p130cas upon FN stimulation of the Src 1-298-expressing cells. FAK-induced phosphorylation of p130cas in the Src 1-298 cells promoted the SH2 domain-dependent binding of the Nck adaptor protein to p130cas, which may facilitate signaling to ERK2. These results show that there are additional FN-stimulated pathways to ERK2 that do not involve Grb2 binding to FAK.  相似文献   

12.
The docking protein FRS2 was implicated in the transmission of extracellular signals from the fibroblast growth factor (FGF) or nerve growth factor (NGF) receptors to the Ras/mitogen-activated protein kinase signaling cascade. The two members of the FRS2 family, FRS2alpha and FRS2beta, are structurally very similar. Each is composed of an N-terminal myristylation signal, a phosphotyrosine-binding (PTB) domain, and a C-terminal tail containing multiple binding sites for the SH2 domains of the adapter protein Grb2 and the protein tyrosine phosphatase Shp2. Here we show that the PTB domains of both the alpha and beta isoforms of FRS2 bind directly to the FGF or NGF receptors. The PTB domains of the FRS2 proteins bind to a highly conserved sequence in the juxtamembrane region of FGFR1. While FGFR1 interacts with FRS2 constitutively, independent of ligand stimulation and tyrosine phosphorylation, NGF receptor (TrkA) binding to FRS2 is strongly dependent on receptor activation. Complex formation with TrkA is dependent on phosphorylation of Y490, a canonical PTB domain binding site that also functions as a binding site for Shc (NPXpY). Using deletion and alanine scanning mutagenesis as well as peptide competition assays, we demonstrate that the PTB domains of the FRS2 proteins specifically recognize two different primary structures in two different receptors in a phosphorylation-dependent or -independent manner. In addition, NGF-induced tyrosine phosphorylation of FRS2alpha is diminished in cells that overexpress a kinase-inactive mutant of FGFR1. This experiment suggests that FGFR1 may regulate signaling via NGF receptors by sequestering a common key element which both receptors utilize for transmitting their signals. The multiple interactions mediated by FRS2 appear to play an important role in target selection and in defining the specificity of several families of receptor tyrosine kinases.  相似文献   

13.
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.  相似文献   

14.
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors.  相似文献   

15.
Fibroblast growth factor receptor 3 (FGFR3) influences a diverse array of biological processes, including cell growth, differentiation, and migration. Activating mutations in FGFR3 are associated with multiple myeloma, cervical carcinoma, and bladder cancer. To identify proteins that interact with FGFR3 and which may mediate FGFR3-dependent signaling, a yeast two-hybrid screen was employed using the cytoplasmic kinase domain of FGFR3 as bait. We identified the adapter protein SH2-B as an FGFR3-interacting protein. Coimmunoprecipitation experiments demonstrate binding of the SH2-B beta isoform to FGFR3 in 293T cells. Tyrosine phosphorylation of SH2-B beta was observed when coexpressed with activated FGFR3 mutants such as the weakly activated mutant N540K or the strongly activated mutant K650E, both associated with human developmental syndromes. The extent of tyrosine phosphorylation of SH2-B beta correlates with receptor activation, suggesting that FGFR3 activation mediates tyrosine phosphorylation of SH2-B beta. Furthermore, two tyrosine phosphorylation sites of FGFR3, Tyr-724 and Tyr-760, are required for optimal binding of the Src homology-2 (SH2) domain of SH2-B beta. We also demonstrate the phosphorylation and nuclear translocation of Stat5 by activated FGFR3, which increases in response to overexpression of SH2-B beta. Taken together, our results identify SH2-B beta as a novel FGFR3 binding partner that mediates signal transduction.  相似文献   

16.
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.  相似文献   

17.
Recently, we and others have demonstrated that negative signaling in B cells selectively induces the tyrosine phosphorylation of a novel inositol polyphosphate phosphatase, p145SHIP. In this study, we present data indicating that p145SHIP binds directly a phosphorylated motif, immunoreceptor tyrosine-based inhibition motif (ITIM), present in the cytoplasmic domain of Fc gammaRIIB1. Using recombinant SH2 domains, we show that binding is mediated via the Src homology region 2 (SH2)-containing inositol phosphatase (SHIP) SH2 domain. SHIP also bound to a phosphopeptide derived from CD22, raising the possibility that SHIP contributes to negative signaling by this receptor as well as Fc gammaRIIB1. The association of SHIP with the ITIM phosphopeptide was activation independent, while coassociation with Shc was activation dependent. Furthermore, experiments with Fc gammaRIIB1-deficient B cells demonstrated a genetic requirement for expression of Fc gammaRIIB1 in the induction of SHIP phosphorylation and its interaction with Shc. Based on these results, we propose a model of negative signaling in which co-cross-linking of surface immunoglobulin and Fc gammaRIIB1 results in sequential tyrosine phosphorylation of the ITIM, recruitment and phosphorylation of p145SHIP, and subsequent binding of Shc.  相似文献   

18.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

19.
Eph-related receptor tyrosine kinases have been implicated in the control of axonal navigation and fasciculation. To investigate the biochemical mechanisms underlying such functions, we have expressed the EphB2 receptor (formerly Nuk/Cek5/Sek3) in neuronal NG108-15 cells, and have observed the tyrosine phosphorylation of multiple cellular proteins upon activation of EphB2 by its ligand, ephrin-B1 (formerly Elk-L/Lerk2). The activated EphB2 receptor induced the tyrosine phosphorylation of a 62-64 kDa protein (p62[dok]), which in turn formed a complex with the Ras GTPase-activating protein (RasGAP) and SH2/SH3 domain adaptor protein Nck. RasGAP also bound through its SH2 domains to tyrosine-phosphorylated EphB2 in vitro, and complexed with activated EphB2 in vivo. We have localized an in vitro RasGAP-binding site to conserved tyrosine residues Y604 and Y610 in the juxtamembrane region of EphB2, and demonstrated that substitution of these amino acids abolishes ephrin-B1-induced signalling events in EphB2-expressing NG108-15 cells. These tyrosine residues are followed by proline at the + 3 position, consistent with the binding specificity of RasGAP SH2 domains determined using a degenerate phosphopeptide library. These results identify an EphB2-activated signalling cascade involving proteins that potentially play a role in axonal guidance and control of cytoskeletal architecture.  相似文献   

20.
The genome of avian sarcoma virus CT10 encodes a fusion protein in which viral Gag sequences are fused to cellular Crk sequences containing primarily Src homology 2 (SH2) and Src homology 3 (SH3) domains. Transformation of chicken embryo fibroblasts (CEF) with the Gag-Crk fusion protein results in the elevation of tyrosine phosphorylation on specific cellular proteins with molecular weights of 130,000, 110,000, and 70,000 (p130, p110, and p70, respectively), an event which has been correlated with cell transformation. In this study, we have identified the 70-kDa tyrosine-phosphorylated protein in CT10-transformed CEF (CT10-CEF) as paxillin, a cytoskeletal protein suggested to be important for organizing the focal adhesion. Tyrosine-phosphorylated paxillin was found to be complexed with v-Crk in vivo as evident from coimmunoprecipitation studies. Moreover, a bacterially expressed recombinant glutathione S-transferase (GST)-CrkSH2 fragment bound paxillin in vitro with a subnanomolar affinity, suggesting that the SH2 domain of v-Crk is sufficient for binding. Mapping of the sequence specificity of a GST-CrkSH2 fusion protein with a partially degenerate phosphopeptide library determined a motif consisting of pYDXP, and in competitive coprecipitation studies, an acetylated A(p)YDAPA hexapeptide was able to quantitatively inhibit the binding of GST-CrkSH2 to paxillin and p130, suggesting that it meets the minimal structural requirements necessary for the interaction of CrkSH2 with physiological targets. To investigate the mechanism by which v-Crk elevates the tyrosine phosphorylation of paxillin in vivo, we have treated normal CEF and CT10-CEF with sodium vanadate to inhibit protein tyrosine phosphatase activity. These data suggest that paxillin is involved in a highly dynamic kinase-phosphatase interplay in normal CEF and that v-Crk binding may interrupt this balance to increase the steady-state level of tyrosine phosphorylation. By contrast, the 130-kDa protein was not tyrosine phosphorylated upon vanadate treatment of normal CEF and only weakly affected in the CT10-CEF, suggesting that a different mechanism may be involved in its phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号