首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.  相似文献   

2.
Miampamba M  Million M  Taché Y 《Peptides》2011,32(5):1078-1082
We previously showed that medullary thyrotropin-releasing hormone (TRH) or the stable TRH agonist, RX-77368 administered intracisternally induces vagal-dependent activation of gastric myenteric neurons and prevents post surgery-induced delayed gastric emptying in rats. We investigated whether abdominal surgery alters intracisternal (ic) RX-77368 (50 ng)-induced gastric myenteric neuron activation. Under 10 min enflurane anesthesia, rats underwent an ic injection of saline or RX-77368 followed by a laparotomy and a 1-min cecal palpation, or no surgery and were euthanized 90 min later. Longitudinal muscle/myenteric plexus whole-mount preparations of gastric corpus and antrum were processed for immunohistochemical detection of Fos alone or double labeled with protein gene-product 9.5 (PGP 9.5) and vesicular acetylcholine transporter (VAChT). In the non surgery groups, ic RX-77368 induced a 17 fold increase in Fos-expression in both gastric antrum and corpus myenteric neurons compared to saline injected rats. PGP 9.5 ascertained the neuronal identity of myenteric cells expressing Fos. In the abdominal surgery groups, ic RX-77368 induced a significant increase in Fos-expression in both the corpus and antrum myenteric ganglia compared with ic saline injected rats which has no Fos in the gastric myenteric ganglia. However, the response was reduced by 73-78% compared with that induced by ic RX 77368 without surgery. Abundant VAChT positive nerve fibers were present around Fos positive neurons. These results indicate a bidirectional interaction between central vagal stimulation of gastric myenteric neurons and abdominal surgery. The modulation of gastric vagus-myenteric neuron activity could play an important role in the recovery phase of postoperative gastric ileus.  相似文献   

3.
The site of action of peripheral peptide YY (PYY)-induced inhibition of vagally stimulated gastric acid secretion was studied using immunoneutralization with PYY antibody in urethan-anesthetized rats. Gastric acid secretion (59+/-7 micromol/90 min) stimulated by intracisternal injection of the stable thyrotropin-releasing hormone (TRH) analog RX-77368 (14 pmol/rat) was dose-dependently inhibited by 52%, 69%, and 83% by intravenous infusion of 0.25, 0.5, and 1.0 nmol. kg(-1) x h(-1) PYY, respectively. PYY or PYY(3-36) (2.4 pmol/rat) injected intracisternally also inhibited the acid response to intracisternal RX-77368 by 73% and 80%, respectively. Intravenous pretreatment with PYY antibody (4.5 mg/rat), which shows a 35% cross-reaction with PYY(3-36) by RIA, completely prevented the inhibitory effect of intravenously infused PYY (1 nmol x kg(-1) x h(-1)). When injected intracisternally, the PYY antibody (280 microg/rat) reversed intracisternal PYY (2.4 pmol)- and intravenous PYY (1 nmol x kg(-1) x h(-1))-induced inhibition of acid response to intracisternal RX-77368 by 64% and 93.5%, respectively. These results provide supporting evidence that peripheral PYY inhibits central vagal stimulation of gastric acid secretion through an action in the brain.  相似文献   

4.
Corticotropin-releasing factor (CRF) injected peripherally induces clustered spike-burst activity in the proximal colon through CRF(1) receptors in rats. We investigated the effect of intraperitoneal CRF on proximal colon ganglionic myenteric cell activity in conscious rats using Fos immunohistochemistry on the colonic longitudinal muscle/myenteric plexus whole mount preparation. In vehicle-pretreated rats, there were only a few Fos immunoreactive (IR) cells per ganglion (1.2 +/- 0.6). CRF (10 microg/kg ip) induced Fos expression in 19.6 +/- 2.1 cells/ganglion. The CRF(1)/CRF(2) antagonist astressin (33 microg/kg ip) and the selective CRF(1) antagonist CP-154,526 (20 mg/kg sc) prevented intraperitoneal CRF-induced Fos expression in the proximal colon (number of Fos-IR cells/ganglion: 2.7 +/- 1.2 and 1.0 +/- 1.0, respectively), whereas atropine (1 mg/kg sc) had no effect. Double labeling of Fos with protein gene product 9.5 revealed the neuronal identity of activated cells that were encircled by varicose fibers immunoreactive to vesicular acetylcholine transporter. Fos immunoreactivity was mainly present in choline acetyltransferase-IR nerve cell bodies but not in the NADPH-diaphorase-positive cells. These results indicate that peripheral CRF activates myenteric cholinergic neurons in the proximal colon through CRF(1) receptor.  相似文献   

5.
Intracisternal injection of the TRH analog RX 77368 (p-Glu-His-(3,3'-dimethyl)-Pro NH2) increased gastric acid and pepsin output in conscious pylorus-ligated rats. In urethane-anesthetized, gastric fistula rats, intracisternal RX 77368 or TRH induced stimulation of gastric acid output which was rapid in onset, long lasting, and dose-dependent, in doses ranging from 3 to 100 ng/rat for RX 77368, and 0.1 to 1 micrograms/rat for TRH. Vagotomy or atropine pretreatment reversed RX 77368 gastric secretory response. The analog was less effective when infused intravenously (1-10 micrograms X kg-1 X h-1) and 22 times more potent than TRH when given intracisternally. These results demonstrated the ability of RX 77368 to act within the rat brain to enhance gastric secretion (acid and pepsin) through vagus cholinergic dependent mechanisms. The enhanced potency and extended duration of action of RX 77368 over TRH, could make intracisternal injection of this peptide a useful test to induce centrally mediated vagal dependent stimulation of gastric secretion in rats.  相似文献   

6.
Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5-10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 +/- 1.0 cells/ganglion [P < 0.05 vs. vehicle-treated mice (2.3 +/- 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 +/- 4% were also pChAT positive and 21 +/- 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.  相似文献   

7.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

8.
Immunohistochemical detection of c-Fos expression was used to identify gastric myenteric plexus neurons that receive excitatory input from vagal efferent neurons activated by electrical stimulation of the cervical vagi in anesthetized rats. Vagal stimulation-induced Fos expression increased with higher pulse frequency, so that with 16 Hz (rectangular pulses of 1 mA/0.5 ms for 30 min) approximately 30% and with 48 Hz 90% of all neurons near the lesser curvature were Fos positive. In sham-stimulated rats there was no Fos expression. The percentage of Fos-activated neurons was only slightly smaller (85% with 48 Hz) near the greater curvature. Prior atropine administration (1 mg/kg ip) had little effect on vagal stimulation-induced Fos expression, and in unilaterally stimulated rats there was no Fos expression on the contralateral (noninnervated) side of the stomach, ruling out mediation by gastric motility or secretory responses. However, polysynaptic recruitment of third- and higher-order neurons cannot be ruled out completely. These results support the idea that, at least in the stomach, functional excitatory innervation of myenteric plexus neurons by the efferent vagus is profuse and widespread, refuting the notion of only a few vagal "command neurons."  相似文献   

9.
Accumulating evidence suggests that central thyrotropin-releasing hormone (TRH) administration induces gastric erosion 4 h after administration through the vagal nerves. However, early changes in the gastric mucosa during these 4 h have not been described. To assess early changes in the gastric mucosa after intracisternal injection of a stable TRH analog, pGlu-His-(3,3'-dimethyl)-ProNH2 (RX-77368), we measured the blood-to-lumen 51Cr-labeled EDTA clearance and examined the effects of vagotomy, atropine, omeprazole, and hydrochloric acid (HCl) on RX-77368-induced mucosal permeability. A cytoprotective dose of RX-77368 (1.5 ng) did not increase mucosal permeability. However, higher doses significantly increased mucosal permeability. Permeability peaked within 20 min and gradually returned to control levels in response to a 15-ng dose (submaximal dose). Increased mucosal permeability was not recovered after a 150-ng dose (ulcerogenic dose). This increase in permeability was inhibited by vagotomy or atropine. Intragastric perfusion with HCl did not change the RX-77368 (15 ng)-induced increase in permeability, but completely inhibited the recovery of permeability after the peak. Pretreatment with omeprazole did not change the RX-77368 (15 ng)-induced increase in permeability, but quickened the recovery of permeability after the peak. These data indicate that the RX-77368-induced increase in permeability is mediated via the vagal-cholinergic pathway and is not a secondary change in RX-77368-induced acid secretion. Inhibited recovery of permeability on exposure to an ulcerogenic RX-77368 dose or on exposure to HCl plus a submaximal dose of RX-77368 may be crucial for the induction of gastric mucosal lesions by central RX-77368 administration.  相似文献   

10.
The role of gastrin, acetylcholine and histamine in the acid response to central vagal activation induced by intracisternal injection of the stable analog, RX 77368, was further investigated in urethane-anesthetized rats with gastric fistula. The gastrin monoclonal antibody 28-2 injected intravenously, at a dose previously shown to prevent gastrin-induced stimulation of acid secretion, did not alter the peak acid response to intracisternal injection of RX 77368 (15 ng). The TRH analog (30 ng) injected into the cisterna magna increased levels of histamine measured in the hepatic portal blood. Cimetidine administered at a dose which completely blocked the stimulation of gastric acid secretion produced by intravenous infusion of histamine, inhibited by 62% the stimulatory effect of intracisternal RX 77368 (30 ng). The M1 muscarinic antagonist, pirenzepine, completely prevented the acid secretion induced by intracisternal RX 77368 (30 ng). These results indicate that the acid response to central vagal activation by the TRH analog in rats involved M1 muscarinic receptors along with histamine release acting on H2 histaminergic receptors whereas gastrin does not appear to play an important role.  相似文献   

11.
Medullary sites of action for bombesin-induced inhibition of gastric acid secretion were investigated in urethane-anesthetized rats with gastric fistula. Unilateral microinjection of bombesin or vehicle into the dorsal vagal complex was performed using a glass micropipet and pressure ejection of 100 nl volume; gastric acid output was measured every 10 min by flushing the stomach. Microinjection of vehicle into the dorsal vagal complex did not alter gastric acid secretion (1.9 +/- mumol/10) from preinjection levels (2.9 +/- 0.8 mumol/10 min). Microinjection of the stable thyrotropin-releasing hormone (TRH) analog, RX 77368, at a 77 pmol dose into the dorsal vagal complex stimulated gastric acid secretion for 100 min with a peak response at 40 min (24.1 +/- 3.2 mumol/10 min). Concomitant microinjection of RX 77368 (77 pmol) with bombesin (0.6-6.2 pmol) into the dorsal vagal complex dose dependently inhibited by 35-86% the gastric acid response to the TRH analog. Bombesin (6.2 pmol) microinjected into the dorsal vagal complex inhibited by 17% pentagastrin infusion-induced stimulation of gastric acid secretion (13.2 +/- 0.8 mumol/10 min) whereas intracisternal injection induced a 69% inhibition of the pentagastrin response. These results demonstrate that the dorsal motor complex is a sensitive site of action for bombesin-induced inhibition of vagally stimulated gastric secretion. However, other medullary sites must be involved in mediating the inhibitory effect of intracisternal bombesin on pentagastrin-stimulated gastric acid secretion.  相似文献   

12.
《Peptides》1997,18(2):213-219
O-Lee, T. J., J. Y. Wei and Y. TachÉ. Intracisternal Trh and Rx 77368 potently activate gastric vagal efferent discharge in rats. Peptides 18(2) 213–219, 1997.—The influence of intracisternal (ic) TRH and the stable TRH analog, RX 77368, on gastric vagal efferent discharge (GVED) was investigated in urethane-anesthetized rats. Consecutive IC injections of TRH (3, 30, and 300 ng) at 60 min intervals stimulated dose dependently multi-unit GVED with a peak increase of 90 ± 21%, 127 ± 18% and 145 ± 16% respectively. In two separate studies, IC injection of RX 77368 at 1.5 or 15 ng stimulated multi-unit GVED by 142 ± 24% and 244 ± 95% respectively. Saline injection IC had no effect on GVED. RX 77368 (1.5 ng, ic) action was long lasting (84 ± 13 min) compared with TRH (3 ng: 44 ± 7 min). Single-unit analysis also showed that 13 of 13 units responded to ic RX 77368 (1.5 ng) by an increase in activity. These data indicate that low doses of TRH injected ic stimulate vagal efferent outflow to the rat stomach and that RX 77368 action is more potent than TRH.  相似文献   

13.
Changes in gastric contractility induced by intracisternal (ic) injection of thyrotropin-releasing hormone (TRH) or a stable TRH analog, RX77368 [p-Glu-His-(3,3'-dimethyl)-Pro NH2] were investigated in 24 h fasted-conscious rats. Gastric contractility was monitored using chronically implanted extraluminal force transducers sutured to the corpus. Response elicited by a standard meal was used as a physiologic standard. Intracisternal injection of TRH (1 microgram) or RX77368 (100 ng), unlike saline, stimulated high amplitude gastric contractions. The stimulation of gastric contractions induced by ic RX77368 was dose dependent (3-100 ng), rapid in onset, long lasting and not mimicked by the intravenous route of administration. Atropine (0.1 mg/kg) partially antagonized and vagotomy totally blocked the RX77368 (100 ng, ic)-induced stimulation of gastric contractility. These results demonstrated that TRH or RX77368 acts within the brain to elicit potent contractions of the stomach; TRH action appears vagally mediated probably through cholinergic mechanism.  相似文献   

14.
Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duodenal myenteric/submucosal plexuses. A substantial number of insulin hypoglycemia-activated DMN and NTS neurons were choline acetyltransferase and tyrosine hydroxylase positive, respectively, whereas the activated enteric neurons included NADPH- and vasoactive intestinal peptide neurons. The numbers of Fos-positive cells in each above-named brain nucleus or in the gastric/duodenal myenteric plexus of insulin-treated rats were negatively correlated with serum glucose levels and significantly increased when glucose levels were lower than 80 mg/dl. Acute bilateral cervical vagotomy did not influence insulin hypoglycemia-induced Fos induction in the brain vagal-regulatory nuclei but completely and partially prevented this response in the gastric and duodenal enteric plexuses, respectively. These results revealed that brain-gut neurons regulating vagal outflow to the stomach/duodenum are sensitively responsive to insulin hypoglycemia.  相似文献   

15.
To identify neurochemical phenotypes of esophageal myenteric neurons synaptically activated by vagal preganglionic efferents, we immunohistochemically detected the expression of Fos, an immediate early gene product, in whole-mount preparations of the entire esophagus of rats following electrical stimulation of the vagus nerves. When electrical stimulation was applied to either the cervical left (LVN) or right vagus nerve (RVN), neurons with nuclei showing Fos immunoreactivity (IR) were found to comprise approximately 10% of the total myenteric neurons in the entire esophagus. These neurons increased from the oral toward the gastric end of the esophagus, with the highest frequency in the abdominal portion of the esophagus. A significant difference was not found in the number of Fos neurons between the LVN-stimulated and RVN-stimulated esophagus. Double-immunolabeling showed that nitric oxide synthase (NOS)-IR occurred in most (86% and 84% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the entire esophagus. Furthermore, the stimulation of either of the vagus nerves resulted in high proportions (71%-90%) of Fos neurons with NOS-IR, with respect to the total Fos neurons in each segment, in the entire esophagus. However, a small proportion (8% and 7% in the LVN-stimulated and RVN-stimulated esophagus, respectively) of the Fos neurons in the esophagus exhibited choline acetyltransferase (ChAT)-IR. The occurrence-frequency of Fos neurons with ChAT-IR was less than 4% of the total Fos neurons in any segment of the LVN-stimulated and RVN-stimulated esophagus. Some of the Fos neurons with ChAT-IR appeared to be innervated by numerous varicose ChAT-positive nerve terminals. The present results showing that electrical stimulation of the vagus nerves induces a high proportion of Fos neurons with NOS-IR suggests the preferential activation of NOS neurons in the esophagus by vagal preganglionic efferents. This connectivity between the vagal efferents and intrinsic nitrergic neurons might be involved in inhibitory actions on esophageal motility.This study was supported by Grant-in Aids for Scientific Research from Ministry of Education, Sports, and Culture of Japan to H.K. (no. 15500236) and to M.K. (no. 14570065).  相似文献   

16.
TRH analogue, RX 77368, injected intracisternally (i.c.) at high dose (3 microg/rat) produces gastric mucosal lesion formation through vagal-dependent pathway. The gastric mucosal hyperemia induced by i.c. RX 77368 was shown to be mediated by muscarinic vagal efferent fibres and mast cells. Furthermore, electrical vagal stimulation was observed to induce gastric mucosal mast cell degranulation. The aim of the study was to assess the influence of ketotifen, a mast cell stabilizer, on RX 77368-induced gastric lesion formation and gastric acid secretion. RX 77368 (3 microg, i.c.) or vehicle (10 microL, i.c.) was delivered 240 min prior to the sacrifice of the animals. Ketotifen or vehicle (0.9% NaCl, 0.5 mL) was injected intraperitoneally (i.p.) at a dose of 10 mg x kg(-1) 30 min before RX 77368 injection. The extent of mucosal damage was planimetrically measured by a video image analyzer (ASK Ltd., Budapest) device. In the gastric acid secretion studies, the rats were pretreated with ketotifen (10 mg x kg(-1), i.p.) or vehicle (0.9% NaCl, 0.5 mL, i.p.), 30 min later pylorus-ligation was performed and RX 77368 (3 microg, i.c.) or vehicle (0.9% NaCl, 10 microL, i.c.) was injected. The rats were killed 240 min after i.c. injection, and the gastric acid secretion was measured through the titration of gastric contents with 0.1 N NaOH to pH 7.0. RX 77368 (3 microg, i.c.) resulted in a gastric mucosal lesion formation involving 8.2% of the corpus mucosa (n = 7). Ketotifen elicited an 85% inhibition on the development of mucosal lesions (n = 7, P < 0.001) whereas ketotifen alone had no effect on the lesion formation in the mucosa (n = 7). The RX 77368 induced increase of gastric acid secretion was not influenced by ketotifen pretreatment in 4-h pylorus-ligated animals. Central vagal activation induced mucosal lesion formation is mediated by the activation of mucosal mast cells in the stomach. Mast cell inhibition by ketotifen does not influence gastric acid secretion induced by i.c. TRH analogue in 4-h pylorus-ligated rats.  相似文献   

17.
Central injection of TRH or its metabolically stable analogue RX 77368 has been demonstrated to produce a vagal-dependent stimulation in gastric acid secretion. Accumulating evidence exists regarding the interaction of serotonin (5HT) with TRH containing neuronal systems. This study was performed to assess the effect of pretreatment with the 5HT uptake inhibitor fluoxetine on the TRH analogue-induced gastric acid secretory response. Systemic fluoxetine (30 mumol/kg, i.v.) produced a 43-85% increase in the intracisternal RX 77368 (78-780 pmol)-induced gastric acid output, while not affecting the basal acid response. The acid response to a lower dose of RX 77368 (26 pmol) was not altered. In addition, intracisternal fluoxetine (180 nmol) produced a 71% augmentation of the acid secretory response of i.c. RX 77368 (260 pmol). Intracisternal injection of lower doses (60, 120 nmol), or intravenous injection of 180 nmol of fluoxetine was ineffective in altering the intracisternal RX 77368-induced acid response. Pretreatment with the noradrenergic or dopaminergic uptake inhibitor desipramine or GBR 12909 did not alter the RX 77368-stimulated gastric acid secretory response. The results show that fluoxetine pretreatment potentiates the effect of intracisternal RX 77368 on acid secretion. The effect appears to be impulse dependent, and central sites of action are involved. The data suggest an interaction of synaptic serotonin with a RX 77368-elicited event (activation of TRH receptors, second messenger systems and/or firing of the motor vagus) results in potentiation of the RX 77368-induced gastric response.  相似文献   

18.
Acute in vivo measurements are often the initial, most practicable approach used to investigate the effects of novel compounds or genetic manipulations on the regulation of gastric motility. Such acute methods typically involve either surgical implantation of devices or require intragastric perfusion of solutions, which can substantially alter gastric activity and may require extended periods of time to allow stabilization or recovery of the preparation. We validated a simple, non-invasive novel method to measure acutely gastric contractility, using a solid-state catheter pressure transducer inserted orally into the gastric corpus, in fasted, anesthetized rats or mice. The area under the curve of the phasic component (pAUC) of intragastric pressure (IGP) was obtained from continuous manometric recordings of basal activity and in responses to central or peripheral activation of cholinergic pathways, or to abdominal surgery. In rats, intravenous ghrelin or intracisternal injection of the thyrotropin-releasing hormone agonist, RX-77368, significantly increased pAUC while coeliotomy and cacal palpation induced a rapid onset inhibition of phasic activity lasting for the 1-h recording period. In mice, RX-77368 injected into the lateral brain ventricle induced high-amplitude contractions, and carbachol injected intraperitoneally increased pAUC significantly, while coeliotomy and cecal palpation inhibited baseline contractile activity. In wild-type mice, cold exposure (15 min) increased gastric phasic activity and tone, while there was no gastric response in corticotropin releasing factor (CRF)-overexpressing mice, a model of chronic stress. Thus, the novel solid-state manometric approach provides a simple, reliable means for acute pharmacological studies of gastric motility effects in rodents. Using this method we established in mice that the gastric motility response to central vagal activation is impaired under chronic expression of CRF.  相似文献   

19.
Central administration of thyrotropin-releasing hormone (TRH) enhanced pancreatic blood flow in animal models. TRH nerve fibers and receptors are localized in the dorsal vagal complex (DVC), and retrograde tracing techniques have shown that pancreatic vagal nerves arise from the DVC. However, nothing is known about the central sites of action for TRH to elicit the stimulation of pancreatic blood flow. Effect of microinjection of a TRH analog into the DVC on pancreatic blood flow was investigated in urethane-anesthetized rats. After measuring basal flow, a stable TRH analog (RX-77368) was microinjected into the DVC and pancreatic blood flow response was observed for 120 min by laser Doppler flowmetry. Vagotomy of the several portions, or pretreatment with atoropine methyl nitrate or N(G)-nitro-l-arginine-methyl ester was performed. Microinjection of RX-77368 (0.1-10 ng) into the left or right DVC dose-dependently increased pancreatic blood flow. The stimulation of pancreatic blood flow by RX-77368 microinjection was eliminated by the same side of cervical vagotomy as the microinjection site or subdiaphragmatic vagotomy, but not by the other side of cervical vagotomy. The TRH-induced stimulation of pancreatic blood flow was abolished by atropine or N(G)-nitro-l-arginine-methyl ester. These results suggest that TRH acts in the DVC to stimulate pancreatic blood flow through vagal-cholinergic and nitric oxide dependent pathways, indicating that neuropeptides may act in the specific brain nuclei to regulate pancreatic function.  相似文献   

20.
Urocortin II (Ucn II) is a new member of the corticotropin-releasing factor (CRF) family that binds selectively to the CRF subtype 2 receptor (CRF(2)). CRF or urocortin injected intravenously (i.v.) induced hypotension. We investigated the influence of iv human Ucn II (hUcn II) on basal mean blood pressure (MAP) and on the sympathetic mediated hypertensive response to TRH analog, RX-77368 injected intracisternally (i.c.) 20 min after hUcn II in urethane-anesthetized rats. Ucn II (3, 10, and 30 microg/kg, i.v.) significantly decreased basal MAP from baseline by -20.9+/-6.5, -21.3+/-5.4 and -46.8+/-6.5 mm Hg, respectively, after 10 min. RX-77368 (30 ng, i.c.) elevated MAP for over 90 min with a maximal hypertensive response at 20 min. Ucn II (3, 10, and 30 microg/kg, i.v.) did not alter the 20 min net rise in MAP induced by RX-77368 (35.7+/-7.1, 32.6+/-3.3 and 24.6+/-6.9 mm Hg, respectively) compared with vehicle (33.6+/-4.3 mm Hg). The selective CRF(2) antagonist, astressin(2)-B (60 microg/kg, i.v.) abolished hUcn II hypotensive action while having no effect on basal MAP. These data show that iv hUcn II induces hypotension through peripheral CRF(2) receptor while not altering the responsiveness to sympathetic nervous system-mediated rise in MAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号