首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We investigated which transient receptor potential (TRP) channel is responsible for the nonselective cation channel (NSCC) activated by carbachol (CCh) in murine stomach with RT-PCR and the electrophysiological method. All seven types of TRP mRNA were detected in murine stomach with RT-PCR. When each TRP channel was expressed, the current-voltage relationship of mTRP5 was most similar to that recorded in murine gastric myocytes. mTRP5 showed a conductance order of Cs(+) > K(+) > Na(+), similar to that in the murine stomach. With 0.2 mM GTPgammaS in the pipette solution, the current was activated transiently in both NSCC in the murine stomach and the expressed mTRP5. Both NSCC activated by CCh in murine stomach and mTRP5 were inhibited by intracellularly applied anti-G(q/11) antibody, PLC inhibitor U-73122, IICR inhibitor 2-aminoethoxydiphenylborate, and nonspecific cation channel blockers La(3+) and flufenamate. There were two other unique properties. Both the native NSCC and mTRP5 were activated by 1-oleoyl-2-acetyl-sn-glycerol. Without the activation of NSCC by CCh, the NSCC in murine stomach was constitutively active like mTRP5. From the above results, we suggest that mTRP5 might be a candidate for the NSCC activated by ACh or CCh in murine stomach.  相似文献   

3.
Enteric inhibitory responses in gastrointestinal (GI) smooth muscles involve membrane hyperpolarization that transiently reduce the excitability of GI muscles. We examined the possibility that an active repolarization mechanism participates in the restoration of resting membrane potential after fast inhibitory junction potentials (IJPs) in the murine colon. Previously, we showed these cells express a voltage-dependent nonselective cation conductance (NSCC) that might participate in active repolarization of IJPs. Colonic smooth muscle cells were impaled with micro-electrodes and voltage responses to nerve-evoked IJPs, and locally applied ATP were recorded. Ba2+ (500 muM), a blocker of the NSCC, slowed the rate of repolarization of IJPs. We also tested the effects of Ba2+, Ni2+, and mibefradil, all blockers of the NSCC, on responses to locally applied ATP. Spritzes of ATP caused transient hyperpolarization, and the durations of these responses were significantly increased by the blockers of the NSCC. We considered whether NSCC blockers might affect ATP metabolism and found that Ni2+ decreased ATP breakdown in colonic muscles. Mibefradil had no effect on ATP metabolism. Because both Ni2+ and mibefradil had similar effects on prolonging responses to ATP, it appears that restoration of resting membrane potential after ATP spritzes is not primarily due to ATP metabolism. Neurally released enteric inhibitory transmitter and locally applied ATP resulted in transient hyperpolarizations of murine colonic muscles. Recovery of membrane potential after these responses appears to involve an active repolarization mechanism due to activation of the voltage-dependent NSCC expressed by these cells.  相似文献   

4.
Ion channels encoded by KCNQ genes (1-5) are key regulators of membrane properties in many cell types. The KCNQ5 gene was the last to be identified and has three splice variants that are expressed in human brain and skeletal muscle. The KCNQ5 encoded channel possesses M-current properties and so far no channelopathy has been associated with any of the three variants. We now show that only the shortest KCNQ5 variant, which has exon 9 deleted, was expressed in a variety of murine vascular smooth muscle. In Xenopus oocytes, this variant generated currents with amplitudes, activation kinetics and biophysical properties similar to the full-length variant normally expressed in neuronal tissue. Furthermore sensitivity to block by XE991 and activation by retigabine were also similar between both variants. These data represent an exhaustive characterisation of a truncated KCNQ5 splice variant that may contribute to the native XE991-sensitive channel in murine vasculature.  相似文献   

5.
6.
7.
8.
Zhu  Mei Hong  Lee  Young Mee  Jin  Nange  So  Insuk  Kim  Ki Whan 《Neurophysiology》2003,35(3-4):302-307
The transient receptor potential protein homologue TRPC5 was reported as a molecular identity for the muscarinic receptor-activated nonselective cationic channel (NSCC) in the murine stomach smooth muscle. The canonical, or classical, transient receptor potential proteins, TRPC4 and TRPC5, were suggested as members of the same subfamily of TRPC channels and to be coexpressed as a heteromultimer of both TRPC as well as a homotetramer of each TRPC protein. Thus, we investigated whether the TRPC4 channel is also responsible for the NSCC activated by acetylcholine (ACh) or carbachol (CCh) using electrophysiological techniques. The TRPC channels were expressed in HEK293 cells. When murine TRPC4 channels (mTRPC4) were expressed, the current–voltage relationship of mTRPC4 was also similar to that recorded in native murine gastric myocytes or mTRPC5-expressing HEK cells. With 0.2 mM GTPγS in the pipette solution, the currents in mTRPC4-expressing cells were activated transiently like those in NSCC in the murine stomach and the expressed mTRPC5. The currents recorded in mTRPC4-expressing cells were inhibited by 1 mM La3+ and 100 μM flufenamate. The currents recorded in mTRPC4-expressing cells depended on the extracellular calcium concentration. From the above results, we suggest that mTRPC4/5 might be candidates for the NSCC activated by ACh or CCh in the murine stomach.  相似文献   

9.
Lee KP  Jun JY  Chang IY  Suh SH  So I  Kim KW 《Molecules and cells》2005,20(3):435-441
Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, 50 mM carbachol (CCh) induced INSCC of amplitude [500.8+/-161.8 pA (n=8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from 1525.6+/-414.4 pA (n=8) to 146.4+/-83.3 pA (n=10) by anti-TRPC4 antibody and INSCC amplitudes were reduced from 230.9+/-36.3 pA (n=15) to 49.8+/-11.8 pA (n=9). Furthermore, INSCC in the gastric smooth muscle cells of TRPC4 knockout mice was only 34.4+/-10.4 pA (n=8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.  相似文献   

10.
Increased vascular smooth muscle contractility in TRPC6-/- mice   总被引:12,自引:0,他引:12       下载免费PDF全文
Among the TRPC subfamily of TRP (classical transient receptor potential) channels, TRPC3, -6, and -7 are gated by signal transduction pathways that activate C-type phospholipases as well as by direct exposure to diacylglycerols. Since TRPC6 is highly expressed in pulmonary and vascular smooth muscle cells, it represents a likely molecular candidate for receptor-operated cation entry. To define the physiological role of TRPC6, we have developed a TRPC6-deficient mouse model. These mice showed an elevated blood pressure and enhanced agonist-induced contractility of isolated aortic rings as well as cerebral arteries. Smooth muscle cells of TRPC6-deficient mice have higher basal cation entry, increased TRPC-carried cation currents, and more depolarized membrane potentials. This higher basal cation entry, however, was completely abolished by the expression of a TRPC3-specific small interference RNA in primary TRPC6(-)(/)(-) smooth muscle cells. Along these lines, the expression of TRPC3 in wild-type cells resulted in increased basal activity, while TRPC6 expression in TRPC6(-/-) smooth muscle cells reduced basal cation influx. These findings imply that constitutively active TRPC3-type channels, which are up-regulated in TRPC6-deficient smooth muscle cells, are not able to functionally replace TRPC6. Thus, TRPC6 has distinct nonredundant roles in the control of vascular smooth muscle tone.  相似文献   

11.
12.
The major laminin-binding integrin of skeletal, smooth, and heart muscle is alpha7beta1-integrin, which is structurally related to alpha6beta1. It occurs in three cytoplasmic splice variants (alpha7A, -B, and -C) and two extracellular forms (X1 and X2) which are developmentally regulated and differentially expressed in skeletal muscle. Previously, we have shown that ectopic expression of the alpha7beta-integrin splice variant in nonmotile HEK293 cells specifically induced cell locomotion on laminin-1 but not on fibronectin. To investigate the specificity and the mechanism of the alpha7-mediated cell motility, we expressed the three alpha7-chain cytoplasmic splice variants, as well as alpha6A- and alpha6B-integrin subunits in HEK293 cells. Here we show that all three alpha7 splice variants (containing the X2 domain), as well as alpha6A and alpha6B, promote cell attachment and stimulate cell motility on laminin-1 and its E8 fragment. Deletion of the cytoplasmic domain (excluding the GFFKR consensus sequence) from alpha7B resulted in a loss of the motility-enhancing effect. On laminin-2/4 (merosin), the predominant isoform in mature skeletal muscle, only alpha7-expressing cells showed enhanced motility, whereas cells transfected with alpha6A and alpha6B neither attached nor migrated on laminin-2. Adhesion of alpha7-expressing cells to both laminin-1 and laminin-2 was specifically inhibited by a new monoclonal antibody (6A11) specific for alpha7. Expression of the two extracellular splice variants alpha7X1 and alpha7X2 in HEK293 cells conferred different motilities on laminin isoforms: Whereas alpha7X2B promoted cell migration on both laminin-1 and laminin-2, alpha7X1B supported motility only on laminin-2 and not on laminin-1, although both X1 and X2 splice variants revealed similar adhesion rates to laminin-1 and -2. Fluorescence-activated cell sorter analysis revealed a dramatic reduction of surface expression of alpha6-integrin subunits after alpha7A or -B transfection; also, surface expression of alpha1-, alpha3-, and alpha5-integrins was significantly reduced. These results demonstrate selective responses of alpha6- and alpha7-integrins and of the alpha7 splice variants to laminin-1 and -2 and indicate differential roles in laminin-controlled cell adhesion and migration.  相似文献   

13.
14.
15.
Potassium channels activated by membrane stretch may contribute to maintenance of relaxation of smooth muscle cells in visceral hollow organs. Previous work has identified K(+) channels in murine colon that are activated by stretch and further regulated by NO-dependent mechanisms. We have screened murine gastrointestinal, vascular, bladder, and uterine smooth muscles for the expression of TREK and TRAAK mRNA. Although TREK-1 was expressed in many of these smooth muscles, TREK-2 was expressed only in murine antrum and pulmonary artery. TRAAK was not expressed in any smooth muscle cells tested. Whole cell currents from TREK-1 expressed in mammalian COS cells were activated by stretch, and single channel recordings showed that the stretch-dependent conductance was due to 90 pS channels. Sodium nitroprusside (10(-6) or 10(-5) m) and 8-Br-cGMP (10(-4) or 10(-3) m) increased TREK-1 currents in perforated whole cell and single channel recordings. Mutation of the PKG consensus sequence at serine 351 blocked the stimulatory effects of sodium nitroprusside and 8-Br-cGMP on open probability without affecting the inhibitory effects of 8-Br-cAMP. TREK-1 encodes a component of the stretch-activated K(+) conductance in smooth muscles and may contribute to nitrergic inhibition of gastrointestinal muscles.  相似文献   

16.
《Gene》1998,207(2):259-266
ATP acts as a fast excitatory neurotransmitter by binding to a large family of membrane proteins, P2X receptors, that have been shown to be ligand-gated, non-selective cation channels. We report the cloning of a full-length and alternatively spliced form of the human P2X4 gene. Clones were identified from a human stomach cDNA library using a rat P2X4 probe. Nucleotide sequence analysis of positive clones identified the full-length human P2X4 cDNA, which codes for a 388-residue protein that is highly homologous (82%) to the rat gene, and an alternatively spliced cDNA. In the alternatively spliced cDNA, the 5′-untranslated region and the first 90 amino acids in the coding region of full-length human P2X4 are replaced by a 35 amino acid coding sequence that is highly homologous with a region of chaparonin proteins in the hsp-90 family. The open reading frames of the full-length and splice variant clones were confirmed by in vitro translation. Northern analysis indicated expression of the full-length P2X4 message in numerous human tissues including smooth muscle, heart, and skeletal muscles. Alternatively spliced RNAs were identified in smooth muscle and brain by RT–PCR and confirmed by RNAse protection assays using a 710 bp anti-sense RNA probe that spanned the alternatively spliced and native P2X4 regions. Injection of full-length, but not alternatively spliced, cRNA into Xenopus oocytes resulted in the expression of ATP gated non-selective cation currents.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号