首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We examined whether capsaicin-sensitive sensory neurons might be involved in the increase in the gastric tissue level of prostaglandins, thereby contributing to the reduction of water immersion restraint stress (WIR)-induced gastric mucosal injury in rats. Gastric tissue levels of calcitonin gene-related peptide (CGRP), 6-keto-PGF1alpha, and PGE2 were transiently increased 30 min after WIR. These increases were significantly inhibited by subcutaneous injection of capsazepine (CPZ), a vanilloid receptor antagonist, and by functional denervation of capsaicin-sensitive sensory neurons induced by the administration of high-dose capsaicin. The administration of capsaicin (orally) and CGRP (intravenously) significantly enhanced the WIR-induced increases in the gastric tissue level of prostaglandins 30 min after WIR, whereas CGRP-(8-37), a CGRP receptor antagonist, significantly inhibited them. Pretreatment with Nomega-nitro-L-arginine methyl ester (L-NAME), a nonselective inhibitor of nitric oxide (NO) synthase (NOS), and that with indomethacin inhibited the WIR-induced increases in gastric tissue levels of prostaglandins, whereas either pretreatment with aminoguanidine (AG), a selective inhibitor of the inducible form of NOS, or that with NS-398, a selective inhibitor of cyclooxygenase (COX)-2, did not affect them. CPZ, the functional denervation of capsaicin-sensitive sensory neurons, and CGRP-(8-37) significantly increased gastric MPO activity and exacerbated the WIR-induced gastric mucosal injury in rats subjected to 4-h WIR. The administration of capsaicin and CGRP significantly increased the gastric tissue levels of prostaglandins and inhibited both the WIR-induced increases in gastric MPO activity and gastric mucosal injury 8 h after WIR. These effects induced by capsaicin and CGRP were inhibited by pretreatment with L-NAME and indomethacin but not by pretreatment with AG and NS-398. These observations strongly suggest that capsaicin-sensitive sensory neurons might release CGRP, thereby increasing the gastric tissue levels of PGI2 and PGE2 by activating COX-1 through activation of the constitutive form of NOS in rats subjected to WIR. Such activation of capsaicin-sensitive sensory neurons might contribute to the reduction of WIR-induced gastric mucosal injury mainly by inhibiting neutrophil activation.  相似文献   

2.
Prostaglandings (PGs), nitric oxide (NO) and capsaicin-sensitive afferent neurons play a pivotal role in the defensive mechanisms against gastric mucosal injury. Glucocorticoid hormones released in response to ulcerogenic stimuli are naturally occurring gastroprotective factors and exert many of the same actions in the stomach as PGs, NO and capsaicin-sensitive afferent neurons. The results reviewed suggest that glucocorticoids exert a pivotal compensatory role in the maintenance of gastric mucosal integrity in the case of impaired gastroprotective mechanisms provided by PGs, NO and capsaicin-sensitive afferent neurons. The compensatory protective action of glucocorticoids may be provided by their maintenance of glucose homeostasis and gastric microcirculation.  相似文献   

3.
Capsaicin-sensitive afferents and their role in gastroprotection: an update   总被引:1,自引:0,他引:1  
The pivotal role of capsaicin-sensitive peptidergic sensory fibers in the maintenance of gastric mucosal integrity against injurious interventions was suggested by the authors 20 years ago. Since then substantial evidence has accumulated for the local sensory-efferent function of the released CGRP, tachykinins and NO in this gastroprotective mechanism. This overview outlines some recent achievements which shed light on new aspects and further horizons in this field. (1) Cloning the capsaicin VR-1 receptor (an ion channel-coupled receptor) and raising the VR-1 knockout mice provided a definite molecular background for the existence of capsaicin-sensitive afferents with both sensory and mediator releasing functions in the stomach. This cation channel is also sensitive to hydrogen ions. (2) VR-1 agonists (capsaicin, resiniferatoxin, piperine) protect against gastric ulcer of the rat parallel with their sensory stimulating potencies. (3) Antidromic stimulation of capsaicin-sensitive vagal and somatic afferents results in the release of CGRP, tachykinins, NO and somatostatin. Somatostatin with gastroprotective effect is released from D cells and sensory nerve endings. (4) The recent theory for the existence of spinal afferents without sensory function [P. Holzer, C.A. Maggi, Dissociation of dorsal root ganglion neurons into afferent and efferent-like neurons, Neuroscience 86 (1998) 389-398] is discussed. Data proposed to support this theory are interpreted here on the basis of a dual sensory-efferent function of VR-1 positive afferents, characterized by a frequency optimum of discharges for release vasodilatory neuropeptides below the nociceptive threshold. (5) Recent data on the effect of capsaicin in healthy human stomach are summarized. These results indicate that the gastroprotective effect of capsaicin in the human stomach involves additional mechanisms to those already revealed in the rat.  相似文献   

4.
Afferent neuron-mediated gastric mucosal protection has been suggested to result from the local release of vasodilator peptides such as calcitonin gene-related peptide (CGRP) from afferent nerve endings within the stomach. The present study, therefore, examined whether rat alpha-CGRP, administered via different routes, is able to protect against mucosal injury induced by gastric perfusion with 25% ethanol or acidified aspirin (25 mM, pH 1.5) in urethane-anesthetized rats. Close arterial infusion of CGRP (15 pmol/min) to the stomach, via a catheter placed in the abdominal aorta proximal to the celiac artery, significantly reduced gross mucosal damage caused by ethanol and aspirin whereas mean arterial blood pressure (BP) was not altered. Intravenous infusion of CGRP (50 pmol/min) did not affect aspirin-induced mucosal injury but significantly enhanced ethanol-induced lesion formation. Intravenous CGRP (50 pmol/min) also lowered BP and increased the gastric clearance of [14C]aminopyrine, an indirect measure of gastric mucosal blood flow while basal gastric output of acid and bicarbonate was not altered. Intragastric administration of CGRP (260 nM) significantly inhibited aspirin-induced mucosal damage but did not influence damage in response to ethanol. BP, gastric clearance of [14C]aminopyrine, and gastric output of acid and bicarbonate remained unaltered by intragastric CGRP. These data indicate that only close arterial administration of CGRP to the rat stomach, at doses devoid of a systemic hypotensive effect, is able to protect against both ethanol- and aspirin-induced mucosal damage. As this route of administration closely resembles local release of the peptide in the stomach, CGRP may be considered as a candidate mediator of afferent nerve-induced gastric mucosal protection.  相似文献   

5.
The aim of this study was to investigate the effects of peripherally injected glucagon like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and the mechanisms included in the effect. Absolute ethanol was administered through an orogastric cannula right after the injection of GLP-1 (1, 10, 100, 1000 or 10,000 ng/kg; i.p.). The rats were decapitated an hour later, the stomachs removed and the gastric mucosal damage scored. 1000 ng GLP-1 inhibited gastric mucosal damage by 45% and 10,000 ng GLP-1 by 60%. The specific receptor antagonist exendin-(9-39) (2500 ng/kg; i.p.), calcitonin gene related peptide (CGRP) receptor antagonist CGRP-(8-37) (10 microg/kg; i.p.), nitric oxide (NO) synthase inhibitor l-NAME (30 mg/kg; s.c.) and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) inhibited the preventive effect of GLP-1 on ethanol-induced gastric mucosal damage. GLP-1 also prevented the decrease in gastric mucosal blood flow caused by ethanol when administered at gastroprotective doses (1000 and 10,000 ng/kg; i.p.). In conclusion, GLP-1 administered peripherally prevents the gastric mucosal damage caused by ethanol in rats. CGRP, NO, prostaglandin and gastric mucosal blood flow are thought to play a role in this effect, mediated through receptors specific to GLP-1.  相似文献   

6.
Orexin-A, identified in the neurons and endocrine cells in the gut, has been implicated in control of food intake and sleep behavior but little is known about its influence on gastric secretion and mucosal integrity. The effects of orexin-A on gastric secretion and gastric lesions induced in rats by 3.5 h of water immersion and restraint stress (WRS) or 75% ethanol were determined. Orexin-A (5-80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by WRS and this was accompanied by the significant rise in plasma orexin-A, CGRP and gastrin levels, the gastric mucosal blood flow (GBF), luminal NO concentration and an increase in mRNA for CGRP and overexpression of COX-2 protein and the generation of PGE(2) in the gastric mucosa. Orexin-A-induced protection was abolished by selective OX-1 receptor antagonist, vagotomy and attenuated by suppression of COX-1 and COX-2, deactivation of afferent nerves with neurotoxic dose of capsaicin, pretreatment with CCK(2)/gastrin antagonist, CGRP(8-37) or capsazepine and by inhibition of NOS with L-NNA. This study shows for the first time that orexin-A exerts a potent protective action on the stomach of rats exposed to non-topical ulcerogens such as WRS or topical noxious agents such as ethanol and these effects depend upon hyperemia mediated by COX-PG and NOS-NO systems, activation of vagal nerves and sensory neuropeptides such as CGRP released from sensory nerves probably triggered by an increase in gastric acid secretion induced by this peptide.  相似文献   

7.
Rats with experimental colitis suffer from impaired gastric emptying (GE). We previously showed that this phenomenon involves afferent neurons within the pelvic nerve. In this study, we aimed to identify the mediators involved in this afferent hyperactivation. Colitis was induced by trinitrobenzene sulfate (TNBS) instillation. We determined GE, distal front, and geometric center (GC) of intestinal transit 30 min after intragastric administration of a semiliquid Evans blue solution. We evaluated the effects of the transient receptor potential vanilloid type 1 (TRPV1) antagonists capsazepine (5-10 mg/kg) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)carboxamide (BCTC; 1-10 mg/kg) and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP-(8-37) (150 microg/kg). To determine TRPV1 receptor antagonist sensitivity, we examined their effect on capsaicin-induced relaxations of isolated gastric fundus muscle strips. Immunocytochemical staining of TRPV1 and RT-PCR analysis of TRPV1 mRNA were performed in dorsal root ganglion (DRG) L6-S1. TNBS-induced colitis reduced GE but had no effect on intestinal motility. Capsazepine reduced GE in controls but had no effect in rats with colitis. At doses that had no effects in controls, BCTC and CGRP-(8-37) significantly improved colitis-induced gastroparesis. Capsazepine inhibited capsaicin-induced relaxations by 35% whereas BCTC completely abolished them. TNBS-induced colitis increased TRPV1-like immunoreactivity and TRPV1 mRNA content in pelvic afferent neuronal cell bodies in DRG L6-S1. In conclusion, distal colitis in rats impairs GE via sensitized pelvic afferent neurons. We provided pharmacological, immunocytochemical, and molecular biological evidence that this sensitization is mediated by TRPV1 receptors and involves CGRP release.  相似文献   

8.
BACKGROUND AND AIMS: Transforming growth alpha (TGFalpha) and sensory neurons have been shown to promote gastric mucosal protection and healing. Aims were to examine in vitro interactions between gastric sensory neurons, the sensory neuropeptide calcitonin gene-related peptide (CGRP), and TGFalpha. METHODS: Gastric mucosal/submucosal tissue fragments from Sprague-Dawley (SD) rats were incubated in short-term (30 min) culture. Peptide release into media and TGFalpha tissue content were measured by radioimmunoassay. RESULTS: TGFalpha (1 x 10(-8) to 1 x 10(-6) M) caused dose-dependent stimulation of CGRP release. Maximal CGRP release (+87%) was observed with 1 x 10(-6) M TGFalpha: 28.6+/-3.8 vs. control of 15.5+/-2.7 pg/g tissue; P<0.05. Both CGRP (1 x 10(-7) to 1 x 10(-5) M) and capsaicin (1 x 10-(8) to 1 x 10(-6)M) significantly inhibited basal TGFalpha release in a dose-dependent fashion that ranged from -20% to -39%. In contrast, capsaicin-induced sensory denervation caused significant increases in both basal TGFalpha release and TGFalpha tissue content. CONCLUSION: Function interactions between TGFalpha and gastric sensory neurons are suggested by the observations that (1) TGFalpha stimulated CGRP release from gastric sensory neurons; (2) CGRP and acute capsaicin treatment inhibited TGFalpha release and; (3) capsaicin-induced sensory denervation caused significant increases in both gastric TGFalpha basal release and tissue content.  相似文献   

9.
Ghrelin, identified in the gastric mucosa has been involved in control of food intake and growth hormone (GH) release but little is known about its influence on gastric secretion and mucosal integrity. The effects of ghrelin on gastric secretion, plasma gastrin and gastric lesions induced in rats by 75% ethanol or 3.5 h of water immersion and restraint stress (WRS) were determined. Exogenous ghrelin (5, 10, 20, 40 and 80 microg/kg i.p.) increased gastric acid secretion and attenuated gastric lesions induced by ethanol and WRS and this was accompanied by the significant rise in plasma ghrelin level, gastric mucosal blood flow (GBF) and luminal NO concentrations. Ghrelin-induced protection was abolished by vagotomy and attenuated by suppression of COX, deactivation of afferent nerves with neurotoxic dose of capsaicin or CGRP(8-37) and by inhibition of NOS with L-NNA but not influenced by medullectomy and administration of 6-hydroxydopamine. We conclude that ghrelin exerts a potent protective action on the stomach of rats exposed to ethanol and WRS, and these effects depend upon vagal activity, sensory nerves and hyperemia mediated by NOS-NO and COX-PG systems.  相似文献   

10.
Exogenously administered TGF alpha has been shown to protect rodent gastric mucosa against injury caused by acid-dependent and acid-independent injury. The present study examined whether the gastroprotective effects of TGF alpha on stress-induced gastric ulceration in the rat involves activation of capsaicin-sensitive sensory neurons. Fasted male SD rats were subjected to water restraint stress (WRS) for four hours. Thereafter, rats were euthanized; the stomach opened and macroscopic areas of gastric ulceration quantitated (mm(2)). Gastric tissue contents of TGF alpha and the sensory neuropeptide, calcitonin gene-related peptide (CGRP) were determined by radioimmunoassay. Prior to stress rats received TGF alpha 50, 100 or 200 microg/kg by intraperitoneal injection. Sensory denervation was accomplished by high dose capsaicin treatment. WRS caused severe ulceration in the gastric corpus; 46.1 + 6.6 mm(2). Parenteral administration of TGF alpha caused dose-dependent reduction in gastric injury: 34.7 + 4.9 mm(2) with 50 microg/kg (p < 0.05); 25.4 + 3.6 mm(2) with 100 microg/kg (p < 0.001) and 9.4 + 0.8 mm(2) with 200 microg/kg (p < 0.001). The gastroprotective action of TGF alpha (200 microg/kg, i.p.) was abolished by capsaicin-induced sensory denervation. In addition, WRS ulceration was associated with significant reduction in gastric CGRP (-42%) and TGF alpha (-48%) content. Reduction in CGRP content was prevented by TGF alpha pretreatment. We conclude that: 1) TGF alpha caused dose-dependent gastroprotection against WRS ulceration, 2) TGF alpha-mediated gastric mucosal protection was prevented by capsaicin-induced sensory denervation and, 3) stress-induced injury was associated with significant reduction in gastric content of both TGF alpha and CGRP.  相似文献   

11.
The effects of desensitization of capsaicin-sensitive afferent neurons on gastric microcirculation were investigated before and after administration of indomethacin at ulcerogenic dose in adrenalectomized rats with or without corticosterone replacement and in sham-operated animals. We estimated the blood flow velocity in submucosal microvessels; the diameters and permeability of mucosal venous microvessels as parameters of gastric microcirculation. Desensitization of capsaicin-sensitive neurons was performed with capsaicin at the dose 100 mg/kg two weeks before the experiment. Adrenalectomy was created one week before experiment. In vivo microscopy technique for the direct visualization of gastric microcirculation and the analysis of the blood flow was employed. Indomethacin at ulcerogenic dose decreased the blood flow velocity in submucosal microvessels, caused dilatation of superficial mucosal microvessels and increased their permeability. Desensitization of capsaicin-sensitive afferent neurons potentiated indomethacin-induced microvascular disturbances in gastric submucosa-mucosa. These potentiated effects of the desensitization are obviously promoted by concomitant glucocorticoid deficiency. Thus, glucocorticoid hormones have a beneficial effect on gastric microcirculation in rats with desensitization of capsaicin-sensitive afferent neurons.  相似文献   

12.
The aim of this study was to investigate the effects of intracerebroventricularly injected glucagon-like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and to elucidate the mechanisms involved. Absolute ethanol was administered through an orogastric cannula 5 min before GLP-1 (1 microg/10 microl) injection. One hour later, the rats were decapitated, their stomachs were removed and scored for mucosal damage. GLP-1 inhibited the ethanol-induced gastric mucosal damage by 92%. Centrally injected atropine sulphate, a muscarinic receptor antagonist (5 microg/10 microl), prevented the gastroprotective effect of GLP-1, while mecamylamine, a nicotinic receptor antagonist (25 microg/10 microl), was ineffective. Peripherally injected atropine methyl nitrate (1 mg/kg) did not change the effect of GLP-1, but mecamylamine (5 mg/kg) blocked it. Cysteamine, a somatostatin depletor (280 mg/kg, s.c.), did not affect the protective activity of GLP-1, while inhibition of nitric oxide (NO) synthesis by L-NAME (3 mg/kg, i.v.) significantly abolished the protective effect of GLP-1 on ethanol-induced gastric mucosal lesions. We conclude that central muscarinic and peripheral nicotinic cholinergic receptors and NO, but not somatostatin, contribute to the protective effect of intracerebroventricularly injected GLP-1 on ethanol-induced gastric mucosal damage.  相似文献   

13.
The role of capsaicin-sensitive pathways and CGRP in postoperative gastric ileus was investigated. Abdominal surgery was performed under enflurane anesthesia, and 5 min later, the 20-min rate of gastric emptying was measured by the phenol red method in conscious rats. Surgery inhibited gastric emptying by 76–83% compared with rats receiving anesthesia alone. Capsaicin on the celiac/mesenteric ganglia (10–21 days before) reduced gastric ileus by 33 ± 8%, whereas perivagal capsaicin had no effect. The IV CGRP-induced inhibition of gastric emptying was completely reversed by the CGRP antagonist, CGRP(8–37) (30 μg, IV); CGRP(8–37) (15, 30, or 60 μg) or CGRP monoclonal antibody #4901 (2 mg protein) decreased the inhibition of gastric emptying by 11 ± 7%, 51 ± 13%, 47 ± 3%, and 45 ± 17%, respectively. These results indicate that CGRP and splanchnic capsaicin-sensitive afferents are involved in mediating part of the gastric ileus observed immediately after abdominal surgery.  相似文献   

14.
Central injection of TRH or its stable analog, RX77368, produces a vagal cholinergic stimulation of gastric acid secretion, mucosal blood flow and motor function. In the present study, we have investigated the contribution of capsaicin-sensitive vagal afferent fibers to the gastric responses to intracisternal injection of RX77368. Gastric acid secretion, measured in acute gastric fistula rats anesthetized with urethane, in response to intracisternal injection of RX77368 (3-30 ng) was reduced by 21-65% by perineural pretreatment of the vagus nerves with capsaicin 10-20 days before experiments. The increase in gastric mucosal blood flow measured by hydrogen gas clearance induced by intracisternal injection of RX77368 (30 ng) was also reduced by 65% in capsaicin-pretreated rats. In contrast, increases in gastric motor function measured manometrically or release of gastric luminal serotonin in response to intracisternal injection of RX77368 (3-30 ng) were unaltered by capsaicin pretreatment. The mechanism by which vagal afferent fibers contribute to the secretory and blood flow responses to the stable TRH analog is unclear at present, but it is possible that the decrease in gastric mucosal blood flow by lesion of capsaicin-sensitive vagal afferents limits the secretory response.  相似文献   

15.
Mechanisms of proton-induced stimulation of CGRP release from rat antrum   总被引:1,自引:0,他引:1  
Mechanisms of acid-evoked CGRP release from gastric afferent nerves were investigated in rat antral mucosal/submucosal tissues. Low pH (pH 4.0, 5.0 and 6.0) stimulated antral CGRP release significantly and dose-dependently from rat antral fragments. Removal of extracellular calcium from the incubation medium resulted in significant inhibition (59%, P < 0.001) of acid (pH 4.0)-stimulated CGRP release. Conotoxin (1 x 10(-7) M), the selective blocker of N-type calcium channels, also significantly inhibited proton (pH 4.0)-induced CGRP release to values that were 74% below net stimulated levels. Neither nifedipine (1 x 10(-6) M), the L-type Ca(2+)-channel antagonist, nor indomethacin (1 x 10(-5) M), inhibitor of prostaglandin synthesis, altered acid-induced CGRP release. In contrast, ruthenium red (1 x 10(-5) M), capsaicin antagonist, almost completely prevented acid (pH 4.0)-stimulated CGRP release. Capsazepine (1 x 10(-4) M), a specific capsaicin receptor antagonist, also completely abolished acid-induced CGRP release. In conclusion, the results of these studies indicate that hydrogen ions are capable of evoking CGRP release from peripheral sensory neurons in rat antral mucosal/submucosal tissues. Proton-evoked CGRP release requires extracellular calcium and involves N-type calcium channels. Furthermore, acid appears to exert a capsaicin-like effect to evoke sensory neuropeptide release that is sensitive to capsazepine and ruthenium red. These data suggest that proton-induced antral CGRP release represents a direct action of hydrogen ions on mucosal/submucosal sensory dendritic nerve endings to effect local release of neuropeptide.  相似文献   

16.
目的:探讨高频电磁场(high-frequency electromagnetic fields,HEMFs)曝露治疗急性胃损伤的作用机制。方法:选用健康SD大鼠,以Indomethacin灌胃法复制胃粘膜急性损伤模型,观察40.68MHz HEMFs(波长为7.3m)曝露(微热量,30—50mA,15min,1/d)治疗1或6次后,大鼠胃粘膜损伤程度(胃损伤指数和病理损伤积分)、胃粘膜血流量、血浆表皮生长因子(epidermal growth factor,EGF)和降钙素基因相关肽(calcitonin gene—related peptide,CGRP)水平。结果:HEMFs曝露1次后,胃粘膜血流量较对照组明显升高(P〈0.05),大鼠胃粘膜损伤程度、血浆EGF和CGRP水平较对照组均无显著性差异(P均〉0.05);HEMFs曝露6次后,胃粘膜损伤程度较对照组明显改善(P均〈0.05),胃粘膜血流量显著升高(P〈0.05),血浆EGF和CGRP水平较对照组无显著性差异(P均〉0.05)。结论:HEMFs曝露治疗大鼠胃粘膜急性损伤可能与其增加胃粘膜血流量有关,与血EGF和CGRP无关。  相似文献   

17.
When the barrier to acid back-diffusion is disrupted, there is a protective increase in gastric mucosal blood flow to help remove the back-diffusing acid. Only recently has the mechanism for calling forth this protective hyperemia been determined. The gastric mucosa and submucosa are innervated by many capsaicin-sensitive sensory nerve fibers containing vasodilator peptides. The gastric mucosal sensory neurons monitor for acid back-diffusion, and, when this process occurs, signal for a protective increase in blood flow via release of calcitonin gene-related peptide from the submucosal periarteriolar fibers. The endothelium-derived vasodilator, nitric oxide, plays an important role both in the maintenance of basal gastric mucosal blood flow and in the increase in blood flow that accompanies pentagastrin-stimulated gastric acid secretion. It also interacts with the capsaicin-sensitive sensory nerves in the modulation of the microcirculation to maintain mucosal integrity. Finally, it has been shown that neutrophils play an important role in various forms of mucosal injury. The leukocytes adhere to the vascular endothelium and contribute to injury by reducing blood flow via occlusion of microvessels, as well as by releasing mediators of tissue damage.  相似文献   

18.
Kato S  Araki H  Kawauchi S  Takeuchi K 《Life sciences》2001,68(17):1951-1963
Body temperature dependency in gastric functional responses to baclofen, a GABA(B) agonist, such as acid secretion, mucosal blood flow (GMBF) and motor activity, was examined in urethane-anesthetized rats under normal (37+/-1 degrees C) and hypothermic (31+/-1 degrees C) conditions. A rat stomach was mounted in an ex-vivo chamber, perfused with saline, and the acid secretion was measured using a pH-stat method, simultaneously with GMBF by a laser Doppler flowmeter. Gastric motility was measured using a miniature balloon as intraluminal pressure recordings. Intravenous administration of baclofen significantly increased acid secretion at the doses > 0.3 mg/kg under hypothermic conditions, yet it caused a significant stimulation only at doses > 10 mg/kg under normothermic conditions. The increases in gastric motility and GMBF were similarly induced by baclofen, irrespective of whether the animals were subjected to normothermic or hypothermic conditions. These functional responses to baclofen under hypothermic conditions were totally attenuated by either bilateral vagotomy or atropine (3 mg/kg, s.c.). Baclofen at a lower dose (1 mg/kg i.v.) significantly increased the acid secretion even under normothermic conditions when the animals were subjected to chemical deafferenation of capsaicin-sensitive neurons or pretreatment with intracisternal injection of CGRP8-37 (30 ng/rat). These results suggest that 1) gastric effects of baclofen are dependent on body temperature in stimulating acid secretion but not GMBF or motor activity, 2) the acid stimulatory action of baclofen is enhanced under hypothermic conditions, and 3) the suppression of baclofen-induced acid response under normothermic conditions may be related to capsaicin-sensitive afferent neuronal activity, probably mediated by central release  相似文献   

19.
The gastric mucosa, in particular submucosal blood vessels, are innervated by afferent neurons containing neuropeptides such as calcitonin gene-related peptide. Stimulation of sensory neurons innervating the gastric mucosa increases submucosal blood flow. Since sensory neurons supplying the stomach are of dual origin from nodose and dorsal root ganglia, we examined the effect of selective ablation of either the vagal or spinal sensory innervation to the upper gastrointestinal tract on the increase in gastric mucosal blood flow in response to acid back diffusion into the gastric mucosa. Perineural application of capsaicin to the celiac/superior mesenteric ganglia, but not to the vagus nerves, significantly inhibited by 53% the hyperemic response to acid back diffusion. Tissue levels of immunoreactive calcitonin gene-related peptide in the gastric corpus were significantly reduced (by 73%) by periceliac capsaicin treatment, but unaffected by perivagal capsaicin treatment. These data suggest that spinal capsaicin-sensitive afferents containing calcitonin gene-related peptide immunoreactivity are involved in mediating increases in gastric mucosal blood flow. This increase in gastric mucosal blood flow mediated by sensory neurons may act as a protective mechanism against mucosal injury, similar to responses seen in other tissues such as skin.  相似文献   

20.
Yu J  Tan GS  Deng PY  Xu KP  Hu CP  Li YJ 《Regulatory peptides》2005,125(1-3):93-97
Previous investigations have indicated that calcitonin gene-related peptide (CGRP), a principal transmitter in capsaicin-sensitive sensory nerves, could alleviate cardiac anaphylaxis injury. Rutaecarpine relaxes vascular smooth by stimulation of CGRP release via activation of vanilloid receptor subtype 1 (VR1). In the present study, we examined the role of capsaicin-sensitive sensory nerves in anaphylactic vessels and the effect of rutaecarpine on antigen-challenged constriction in the guinea pig isolated thoracic aorta. The aortas were challenged with 0.01 mg/ml bovine serum albumin, and the tension of aorta rings was continuously monitored. The amount of CGRP released from thoracic aortas was determined in the absence or presence of rutaecarpine. Antigen challenge caused a vasoconstrictor response concomitantly with an increase in the release of CGRP from the isolated thoracic aorta, and the vasoconstrictor responses were potentiated by CGRP8-37 (10 microM) or capsaicin (1 microM). Pretreatment with diphenhydramine (1 microM) markedly decreased antigen-challenged vasoconstriction. Acute application of capsaicin (0.03 or 0.1 microM) significantly inhibited vasoconstrictor responses. Pretreatment with rutaecarpine (10 or 30 microM) significantly increased CGRP release concomitantly with decrease in antigen-challenged vasoconstriction, which was abolished by CGRP8-37 (10 microM) or capsazepine (10 microM). The present results suggest that an increase in the release of CGRP during vascular anaphylaxis may be a beneficial compensatory response, and that rutaecarpine inhibits antigen-challenged vasoconstriction, which is related to stimulation of endogenous CGRP release via activation of VR1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号