共查询到20条相似文献,搜索用时 0 毫秒
1.
B Csillik 《Zeitschrift für mikroskopisch-anatomische Forschung》1984,98(1):11-16
Transection of peripheral sensory axons results in transganglionic degenerative atrophy of central terminals of the affected primary sensory neurons. Nerve growth factor applied at the central stump of the transected nerve prevents or delays transganglionic degenerative atrophy. It is concluded that, under normal conditions, nerve growth factor taken up by receptors at peripheral sensory nerve endings and transported retrogradely to perikarya in dorsal root ganglia, regulates synthesis of neuroproteins destined for maintenance of central terminals of these neurons. Accordingly, transganglionic degenerative atrophy is the consequence of failure of nerve growth factor to reach perikarya of primary sensory neurons. 相似文献
2.
Because nerve growth factor(NGF)is elevated during inflammation,plays a causal role in the initiation of hyperalgesia 相似文献
3.
Elliott SN Wallace JL McKnight W Gall DG Hardin JA Olson M Buret A 《American journal of physiology. Gastrointestinal and liver physiology》2000,278(1):G105-G112
Experimental gastric ulcers are rapidly colonized by various bacteria, resulting in significantly impaired healing. Epidermal growth factor (EGF) is capable of preventing bacterial colonization of the healthy intestinal mucosa. In this study, we examined the possibility that EGF accelerates gastric ulcer healing by reducing bacterial colonization of the ulcer. Gastric ulcers were induced by serosal application of acetic acid. The effect of daily administration of EGF on ulcer healing and bacterial colonization was assessed and compared with the effect of daily treatment with broad-spectrum antibiotics. EGF administration reduced colonization levels and accelerated ulcer healing as effectively as the antibiotic treatment. EGF was without effect on acid secretion or neutrophil infiltration into the ulcer. Bacterial growth was not inhibited in the presence of EGF in vitro. These results demonstrate that EGF reduces bacterial colonization during an established infection of a compromised mucosal surface. This effect may contribute to the ability of EGF to accelerate gastric ulcer healing. This effect is acid independent and not due to an anti-inflammatory effect or to direct bactericidal actions. 相似文献
4.
Differential inhibition of nerve growth factor and epidermal growth factor effects on the PC12 pheochromocytoma line 总被引:15,自引:8,他引:15
下载免费PDF全文

《The Journal of cell biology》1984,98(2):417-426
Tests have been made of the action of the methyltransferase inhibitors 5'-S-methyl adenosine, 5'-S-(2-methyl-propyl)-adenosine, and 3-deaza- adenosine +/- L-homocysteine thiolactone, on nerve growth factor (NGF)- dependent events in the rat pheochromocytoma line PC12. Each of these agents inhibited NGF-dependent neurite outgrowth at concentrations of the order of millimolar. Slow initiation of neurite outgrowth over several days and more rapid regeneration of neurites (congruent to 1 d) were blocked, as was the priming mechanism necessary for genesis of neurites. The inhibitions were reversible in that PC12 cells maintained for several days in the presence of inhibitors grew neurites normally after washout of these agents. Other NGF-dependent responses of the PC12 line (i.e., induction of ornithine decarboxylase activity [over 4 h], enhancement of tyrosine hydroxylase phosphorylation [over 1 h], and rapid changes in cell surface morphology [30 s onward]) were inhibited by each of the agents. In contrast, corresponding epidermal growth factor-dependent responses in ornithine decarboxylase activity, phosphorylation, and cell surface morphology were not blocked, but instead either unaffected or enhanced, by the methylation inhibitors. These inhibitors did not act by blockade of binding of NGF to high- or low-affinity cell surface receptors, though they partially inhibited internalization of [125I]NGF. The inhibition of rapidly-induced NGF- dependent events and the differential inhibition of responses to NGF and epidermal growth factor imply that the methyltransferase inhibitors specifically block one of the first steps in the mechanistic pathway for NGF. 相似文献
5.
The effects of interferon on epidermal growth factor action 总被引:5,自引:0,他引:5
S L Lin P O Ts'o M D Hollenberg 《Biochemical and biophysical research communications》1980,96(1):168-174
Epidermal growth factor-stimulated thymidine incorporation in human fibroblasts is inhibited more than 80% by human interferon, whereas the stimulation of α-aminoisobutyrate uptake is unaffected. Maximum inhibition of thymidine incorporation is observed after treatment of cells with interferon prior to the onset of DNA synthesis. However, even after the initiation of DNA synthesis, interferon rapidly blocks any further increase in thymidine incorporation. Despite these effects, interferon treatment causes no alterations in epidermal growth factor binding, receptor downregulation or receptor reappearance. 相似文献
6.
Central nervous system nuclei and circuits, such as the medial preoptic, ventromedial and paraventricular nuclei of the hypothalamus, play important roles in reproduction and parturition, and are influenced by estrogen. Peripheral autonomic and sensory neurons also play important roles in pregnancy and parturition. Moreover, the steroid hormone estrogen acts directly, not only on the reproductive tract organs (uterus and cervix), but also on the central and peripheral nerves by regulating expression of various neuronal genes. The peripheral primary afferent neurons innervating the uterine cervix relay mechanical and biochemical sensory information induced by local cervical events and by passage of fetuses, to the spinal cord and supraspinal centers. Consequently, the birth process in mammals is influenced by the combined action of neurons and hormones. Peripheral sensory stimuli, induced physiologically by fetal expulsion or mechanically by vaginocervical stimulation, alter behavior, as well as autonomic and neuroendocrine systems. Recent evidence indicates that primary afferent neurons innervating the cervix, in addition to their sensory effects, likely exert local efferent actions on the ripening cervix near term. These efferent effects may involve estrogen-regulated production of such neuropeptides as substance P and calcitonin gene-related peptide in lumbosacral dorsal root ganglia, and their release in the cervix. Collectively, these findings suggest an interrelationship among estrogen, cervix-related sensory neurons, and local cervical events near term. 相似文献
7.
Structure-function studies of murine epidermal growth factor: expression and site-directed mutagenesis of epidermal growth factor gene 总被引:3,自引:0,他引:3
P Ray F J Moy G T Montelione J F Liu S A Narang H A Scheraga R Wu 《Biochemistry》1988,27(19):7289-7295
Wild-type murine epidermal growth factor (mEGF) and mutants with Leu47 replaced by serine and valine, respectively, have been produced by recombinant DNA methodology. A synthetic gene for mEGF was fused to the coding sequence for the signal peptide of the outer membrane protein A (ompA) of Escherichia coli in the secretion vector pIN-III-ompA3, and the recombinant plasmid was used to transform E. coli. Upon induction of gene expression, mEGF and the mutants was expressed and secreted into the periplasmic space. Purification of the wild-type Leu47-mEGF and the mutants was carried out by reversed-phase and anion-exchange high-performance liquid chromatography (HPLC). Amino acid analysis and Western blot analysis further confirmed the identities of the proteins. Specific activities for wild-type and mutant proteins were measured in both mEGF receptor binding and autophosphorylation assays. The recombinant mEGF has specific activities identical with that of mEGF purified from mouse submaxillary glands, while both mutants have reduced specific activities in both bioassays. The data demonstrate the importance of the highly conserved Leu47 residue in mEGF for full biological activity. 相似文献
8.
The peculiar pseudounipolar geometry of primary sensory neurons can lead to ectopic generation of "extra spikes" in the region of the dorsal root ganglion potentially disrupting the fidelity of afferent signaling. We have used an explicit model of myelinated vertebrate sensory neurons to investigate the location and mechanism of extra spike formation, and its consequences for distortion of afferent impulse patterning. Extra spikes originate in the initial segment axon under conditions in which the soma spike becomes delayed and broadened. The broadened soma spike then re-excites membrane it has just passed over, initiating an extra spike which propagates outwards into the main conducting axon. Extra spike formation depends on cell geometry, electrical excitability, and the recent history of impulse activity. Extra spikes add to the impulse barrage traveling toward the spinal cord, but they also travel antidromically in the peripheral nerve colliding with and occluding normal orthodromic spikes. As a result there is no net increase in afferent spike number. However, extra spikes render firing more staccato by increasing the number of short and long interspike intervals in the train at the expense of intermediate intervals. There may also be more complex changes in the pattern of afferent spike trains, and hence in afferent signaling. 相似文献
9.
Urinary concentrations of immunoreactive human epidermal growth factor (hEGF) were determined by specific homologous radioimmunoassay in 169 healthy men (aged 20-69 years), 275 healthy women (20-8 years). healthy women (20-68 years) and 413 pregnant women (20-39 years). Relative hEGF concentrations in urine (micrograms/g creatinine) decreased significantly in both sexes between 24 and 64 years of age. The relative concentrations of hEGF in urine were significantly higher in women than in men at ages 20-69 years. The mean values of relative urinary hEGF concentrations in pregnant women in their twenties and thirties (30.0 +/- 0.7 micrograms/g creatinine and 29.6 +/- 1.2 micrograms/g creatinine) were significantly higher than those in age-matched nonpregnant women (27.3 +/- 1.8 micrograms/g creatinine and 22.8 +/- 0.7 micrograms/g creatinine). Among the trimesters, it was highest in the 2nd trimester of women in the twenties and thirties (33.4 +/- 1.3 micrograms/g creatinine and 31.7 +/- 1.9 micrograms/g creatinine). The significance of the increased urinary excretion of hEGF (micrograms/g creatinine) in pregnancy is not known. Further studies are required to find a source of hEGF in urine and a possible relation between increased hEGF excretion and fetoplacental growth and development. 相似文献
10.
The age-dependent presence of nerve growth factor (NGF) receptors on neurites of sensory neurons of dorsal root ganglia removed from chicks of different embryonic ages and subsequently kept in culture with NGF and/or brain extract has been investigated by autoradiography. Most of the neurons removed at embryonic Day 10 (E10), (82–95%) can be labeled with iodinated NGF, irrespective of whether they are selected for survival by means of NGF, brain extract, or both. However, when neurons are isolated from E16 chicks and maintained in culture with brain extract, only about 28% of the neurons have NGF receptors at reduced density. This percentage is higher than that expected if the number of neurons surviving with NGF would be exactly correlated with the number of neurons displaying NGF receptors: at E16 only about 5% of the neurons survive with NGF alone. In order to determine if the decrease in the number of neurons displaying NGF receptors also occurs in vitro, E10 neurons were cultured for various periods of time either with NGF or brain extract. Most of the neurons grown with NGF do not lose their NGF receptors. In contrast, the majority of the neurons grown in the presence of brain extract lose their receptors: after 6 days in culture, only about 25% of the neurons can be labeled with NGF. It is concluded that in vitro, a maturation with regard to the NGF receptor occurs in the presence of brain extract similar to that observed in vivo. 相似文献
11.
12.
R Elde Y H Cao A Cintra T C Brelje M Pelto-Huikko T Junttila K Fuxe R F Pettersson T H?kfelt 《Neuron》1991,7(3):349-364
Several growth factors originally characterized and named for their action on a variety of cells have more recently been suggested to be importantly involved in the development and maintenance of the nervous system. Acidic fibroblast growth factor (aFGF) is a member of a family of seven structurally related polypeptide growth factors. The cells responsible for expression of aFGF in the nervous system of adult rats have been identified using an affinity-purified antibody to aFGF in immunohistochemical studies and synthetic oligonucleotide probes for in situ hybridization studies. High levels of aFGF expression were observed in motoneurons, primary sensory neurons, and retinal ganglion neurons. Glial cells did not express detectable amounts of aFGF. Confocal and electron microscopic analysis suggested that a large portion of aFGF immunoreactivity was associated with the cytoplasmic face of neuronal membranes, consistent with the hypothesis that aFGF is a sequestered growth factor. 相似文献
13.
Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins 总被引:48,自引:0,他引:48
Platelet-derived growth factor (PDGF) stimulates the phosphorylation of proteins at tyrosine when added to quiescent 3T3 cells, as evidenced by the increase in the amount of phosphotyrosine, relative to phosphoserine and phosphothreonine, in cellular proteins. The increase was detected within 1 min of adding PDGF and was maximal by 5 min. This effect showed the same dependence on PDGF concentration as did association of 125I-PDGF with the cells. In different 3T3 cell lines the magnitude of the increase was approximately proportional to the number of PDGF receptors per cell. A number of proteins phosphorylated at tyrosine in response to PDGF have been detected by two-dimensional gel electrophoresis. They include a pair of related 45 kilodalton phosphoproteins, a pair of related 43 kilodalton phosphoproteins and a 42 kilodalton phosphoprotein. Similar changes were noted when quiescent 3T3 cells were incubated with epidermal growth factor. Possibly, these phosphoproteins are primary substrates of the tyrosine protein kinases activated by the receptors for PDGF and epidermal growth factor, and are involved in physiological effects common to the two growth factors. 相似文献
14.
15.
Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family.Its receptor GFRα3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia(DRG and TG).These neurons co-express the heat,capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1.To further investigate the effects of artemin on sensory neurons,we isolated transgenic mice(ARTN-OE mice) that overexpress art... 相似文献
16.
Merkel cells in vitro: production of nerve growth factor and selective interactions with sensory neurons 总被引:2,自引:0,他引:2
A method has been developed for obtaining mixed primary cultures of dissociated epidermis enriched in Merkel cells. Merkel cells obtained from embryonic rat buccal pads were grown in serum-free medium and identified in vitro using a variety of histological and immunohistochemical markers. Quinacrine, a fluorescent amine, which has been used to identify Merkel cells in situ, labeled a morphologically distinct population of cells in vitro. Cells labeled with quinacrine had a large, phase bright nucleus with prominent nucleoli, surrounded by a phase dark perinuclear ring. Antibodies directed against neuron-specific enolase, another marker for Merkel cells in situ, and antibodies against a well-characterized neuroendocrine vesicle antigen also labeled this population of quinacrine fluorescent cells. Electron microscopic examination of our cultures indicated that cells containing characteristic features of Merkel cells including cytoplasmic dense-cored granules were present. A small but significant increase in the number of Merkel cells was observed over time in culture. Merkel cells supported the survival and outgrowth of both trigeminal ganglion sensory neurons and sympathetic neurons from the superior cervical ganglion in serum-free medium in the absence of exogenous nerve growth factor (NGF). Immunoblots probed with antibodies directed against NGF demonstrated that NGF was present in the medium taken from these cultures. NGF-like immunoreactivity colocalized to cells containing quinacrine fluorescence in situ and in vitro. Addition of antibodies directed against NGF to cocultures of Merkel cells and neurons decreased survival of sympathetic neurons by 90% and decreased survival of sensory neurons by 60%. These results suggest that Merkel cells are capable of providing trophic support for their normal complement of sensory neurons by producing NGF. Selective recognition of these targets was studied in vitro by characterizing the interactions between Merkel cells and growth cones from sensory or sympathetic neurons using both time-lapse videomicroscopy and standard morphometry of fixed cocultures. The majority of trigeminal ganglion sensory neurons (approximately 60%) extended growth cones onto clusters of Merkel cells. Neurites which contacted clusters of Merkel cells were significantly more highly branched than those growing on collagen. In contrast, the majority of sympathetic neurons (greater than 90%) failed to grow onto Merkel cells. Growth cones of sympathetic neurons often "collapsed" and retracted when contact was made with a cluster of Merkel cells. Fixation of Merkel cells with paraformaldehyde prior to coculture did not affect this difference between sensory and sympathetic neurite extension onto the Merkel cells. However, prior fixation of Merkel cells eradicated the apparent Merkel ce-induced branching of sensory neurites.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
17.
Epidermal growth factor (EGF) is a common mitogenic factor that stimulates the proliferation of different types of cells, especially fibroblasts and epithelial cells. EGF activates the EGF receptor (EGFR/ErbB), which initiates, in turn, intracellular signaling. EGFR family is also expressed in neurons of the hippocampus, cerebellum, and cerebral cortex in addition to other regions of the central nervous system (CNS). EGF enhances the differentiation, maturation and survival of a variety of neurons. Transgenic mice lacking the EGFR developed neurodegenerative disease and die within the first month of birth. EGF acts not only on mitotic cells but also on postmitotic neurons, and many studies have indicated that EGF has neuromodulatory effect on various types of neurons in the CNS. This review highlights some of the major recent findings pertinent to the EGF and ErbB family with special references to elucidating their roles in the regulation of neurogenesis, signal transduction and trafficking and degradation. 相似文献
18.
BACKGROUND AND AIMS: Transforming growth alpha (TGFalpha) and sensory neurons have been shown to promote gastric mucosal protection and healing. Aims were to examine in vitro interactions between gastric sensory neurons, the sensory neuropeptide calcitonin gene-related peptide (CGRP), and TGFalpha. METHODS: Gastric mucosal/submucosal tissue fragments from Sprague-Dawley (SD) rats were incubated in short-term (30 min) culture. Peptide release into media and TGFalpha tissue content were measured by radioimmunoassay. RESULTS: TGFalpha (1 x 10(-8) to 1 x 10(-6) M) caused dose-dependent stimulation of CGRP release. Maximal CGRP release (+87%) was observed with 1 x 10(-6) M TGFalpha: 28.6+/-3.8 vs. control of 15.5+/-2.7 pg/g tissue; P<0.05. Both CGRP (1 x 10(-7) to 1 x 10(-5) M) and capsaicin (1 x 10-(8) to 1 x 10(-6)M) significantly inhibited basal TGFalpha release in a dose-dependent fashion that ranged from -20% to -39%. In contrast, capsaicin-induced sensory denervation caused significant increases in both basal TGFalpha release and TGFalpha tissue content. CONCLUSION: Function interactions between TGFalpha and gastric sensory neurons are suggested by the observations that (1) TGFalpha stimulated CGRP release from gastric sensory neurons; (2) CGRP and acute capsaicin treatment inhibited TGFalpha release and; (3) capsaicin-induced sensory denervation caused significant increases in both gastric TGFalpha basal release and tissue content. 相似文献
19.
Summary The distribution of basic fibroblast growth factor (bFGF)-immunoreactivity (IR) was studied in rat sensory and autonomic ganglia. In postnatal and adult sympathetic superior cervical ganglia and in adult parasympathetic otic ganglia no bFGF-staining was found. Postnatal and adult neural crest-and placode-derived sensory ganglia displayed intensive bFGF-IR in a neuronal subpopulation. This subpopulation was characterized by use of consecutive sections of adult dorsal root ganglia stained with antibodies against substance P, somatostatin, bombesin, and bFGF. Basic FGF was colocalized with the somatostatin/bombesin subpopulation but not with substance P. 相似文献
20.
Exogenously administered TGF alpha has been shown to protect rodent gastric mucosa against injury caused by acid-dependent and acid-independent injury. The present study examined whether the gastroprotective effects of TGF alpha on stress-induced gastric ulceration in the rat involves activation of capsaicin-sensitive sensory neurons. Fasted male SD rats were subjected to water restraint stress (WRS) for four hours. Thereafter, rats were euthanized; the stomach opened and macroscopic areas of gastric ulceration quantitated (mm(2)). Gastric tissue contents of TGF alpha and the sensory neuropeptide, calcitonin gene-related peptide (CGRP) were determined by radioimmunoassay. Prior to stress rats received TGF alpha 50, 100 or 200 microg/kg by intraperitoneal injection. Sensory denervation was accomplished by high dose capsaicin treatment. WRS caused severe ulceration in the gastric corpus; 46.1 + 6.6 mm(2). Parenteral administration of TGF alpha caused dose-dependent reduction in gastric injury: 34.7 + 4.9 mm(2) with 50 microg/kg (p < 0.05); 25.4 + 3.6 mm(2) with 100 microg/kg (p < 0.001) and 9.4 + 0.8 mm(2) with 200 microg/kg (p < 0.001). The gastroprotective action of TGF alpha (200 microg/kg, i.p.) was abolished by capsaicin-induced sensory denervation. In addition, WRS ulceration was associated with significant reduction in gastric CGRP (-42%) and TGF alpha (-48%) content. Reduction in CGRP content was prevented by TGF alpha pretreatment. We conclude that: 1) TGF alpha caused dose-dependent gastroprotection against WRS ulceration, 2) TGF alpha-mediated gastric mucosal protection was prevented by capsaicin-induced sensory denervation and, 3) stress-induced injury was associated with significant reduction in gastric content of both TGF alpha and CGRP. 相似文献