首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We previously found that increased intravascular pressure decreased ischemic lung injury by a nitric oxide (NO)-dependent mechanism (Becker PM, Buchanan W, and Sylvester JT. J Appl Physiol 84: 803-808, 1998). To determine the role of cyclic nucleotides in this response, we measured the reflection coefficient for albumin (sigma(alb)), fluid flux (), cGMP, and cAMP in ferret lungs subjected to either 45 min ("short"; n = 7) or 180 min ("long") of ventilated ischemia. Long ischemic lungs had "low" (1-2 mmHg, n = 8) or "high" (7-8 mmHg, n = 6) vascular pressure. Other long low lungs were treated with the NO donor (Z)-1-[N-(3-ammoniopropyl)-N-(n-propyl)amino]diazen-1-ium -1, 2-diolate (PAPA-NONOate; 5 x 10(-4) M, n = 6) or 8-bromo-cGMP (5 x 10(-4) M, n = 6). Compared with short ischemia, long low ischemia decreased sigma(alb) (0.23 +/- 0.04 vs. 0.73 +/- 0.08; P < 0.05) and increased (1.93 +/- 0.26 vs. 0.58 +/- 0.22 ml. min(-1). 100 g(-1); P < 0.05). High pressure prevented these changes. Lung cGMP decreased by 66% in long compared with short ischemia. Lung cAMP did not change. PAPA-NONOate and 8-bromo-cGMP increased lung cGMP, but only 8-bromo-cGMP decreased permeability. These results suggest that ischemic vascular injury was, in part, mediated by a decrease in cGMP. Increased vascular pressure prevented injury by a cGMP-independent mechanism that could not be mimicked by administration of exogenous NO.  相似文献   

2.
The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3',5'-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.  相似文献   

3.
Nitric oxide (.NO) attenuates hydrogen peroxide (H(2)O(2))-mediated injury in porcine pulmonary artery endothelial cells (PAECs) and modulates intracellular levels of cGMP and cAMP. We hypothesized that.NO attenuates H(2)O(2)-induced PAEC monolayer barrier dysfunction through cyclic nucleotide-dependent signaling mechanisms. To examine this hypothesis, cultured PAEC monolayers were treated with H(2)O(2), and barrier function was measured as transmonolayer albumin clearance. H(2)O(2) caused significant PAEC barrier dysfunction that was attenuated by intracellular as well as extracellular.NO generation.NO increased PAEC cGMP and cAMP levels, but treatment with inhibitors of soluble guanylate cyclase or protein kinase G did not abrogate.NO-mediated barrier protection. In contrast, H(2)O(2) decreased protein kinase A activity, and inhibiting protein kinase A abrogated the protective effect of.NO. H(2)O(2)-induced barrier dysfunction was not associated with decreased levels of cGMP or cAMP. 3-Isobutyl-1-methylxanthine and the cGMP analog 8-bromo-cGMP had little effect on H(2)O(2)-mediated endothelial barrier dysfunction, whereas 8-bromo-cAMP plus 3-isobutyl-1-methylxanthine was protective. These results indicate that.NO modulates vascular endothelial barrier function through cAMP-dependent signaling mechanisms.  相似文献   

4.
Tight control of lung liquid (LL) regulation is vital for pulmonary function. The aim of this work was to determine whether PKC activation is involved in the physiological regulation of LL volume in a whole lung preparation. Rat lungs were perfused with a modified Ringer solution, and the lumen was filled with the same solution without glucose. LL volume was measured during a control period and after modulating drugs were administered, and net LL transepithelial movement (J(v)) was calculated. When the PKC activator PMA (10(-5) M) and the Ca(2+) ionophore ionomycin (10(-6) M) were instilled into the lung together, J(v) was significantly reduced (P = 0.03). This reduction was blocked by the PKC inhibitor chelerythrine chloride (10(-6) M; P = 0.56) and by a second PKC inhibitor GF109203X (10(-5) M; P = 0.98). When PMA and ionomycin were added with the β-adrenergic agonist terbutaline, the terbutaline-induced increase in J(v) was abolished. Addition of PMA and ionomycin with the epithelial Na(+) channel (ENaC) blocker amiloride had no additional inhibitory effect. Together, these results suggest that PKC is likely to be involved in LL absorption, and the ability of PMA/ionomycin to block the terbutaline-induced increase in J(v) suggests that the downstream target of PKC is ENaC.  相似文献   

5.
Our laboratory has recently demonstrated that insulin induces relaxation of vascular smooth muscle cells (VSMCs) by activating myosin-bound phosphatase (MBP) and by inhibiting Rho kinase (Begum N, Duddy N, Sandu OA, Reinzie J, and Ragolia L. Mol Endocrinol 14: 1365-1376, 2000). In this study, we tested the hypothesis that insulin via the nitric oxide (NO)/cGMP pathway may inactivate Rho, resulting in a decrease in phosphorylation of the myosin-bound subunit (MBS(Thr695)) of MBP and in its activation. Treatment of confluent serum-starved VSMCs with insulin prevented thrombin-induced increases in membrane-associated RhoA, Rho kinase activation, and site-specific phosphorylation of MBS(Thr695) of MBP and caused MBP activation. Preexposure to N(G)-monomethyl-L-arginine, a NO synthase inhibitor, and R-p-8-(4-chlorophenylthio)cGMP, a cGMP antagonist, attenuated insulin's inhibitory effect on Rho translocation and restored thrombin-mediated Rho kinase activation and site-specific MBS(Thr695) phosphorylation, resulting in MBP inactivation. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked insulin's inhibitory effects by abolishing thrombin-mediated Rho signaling and promoted dephosphorylation of MBS(Thr695). Furthermore, expression of a dominant-negative RhoA decreased basal as well as thrombin-induced MBS(Thr695) phosphorylation and caused insulin activation of MBP. Collectively, these results indicate that insulin inhibits Rho signaling by decreasing RhoA translocation via the NO/cGMP signaling pathway to cause MBP activation via site-specific dephosphorylation of its regulatory subunit MBS.  相似文献   

6.
Nitric oxide (NO) exerts cytoprotective effects against hepatic ischemia-reperfusion damage. This study was designed to evaluate which isoform of NO synthase (NOS) is implicated in the generation of cytoprotective NO and to investigate whether NO effects are mediated by cyclic GMP (cGMP). After partial ischemia for 45 min, liver damage was estimated by the release into plasma of cytolytic enzymes. Ischemia-reperfusion induced marked increases in plasma creatine kinase and lactate dehydrogenase after 1 h of reperfusion and of aminotransferases after 6 h of reperfusion. The pretreatment of ischemic rats with 8-bromo-cGMP (16 mg/kg i.v. 30 min before ischemia) or with L-arginine (the endogenous precursor of NO, 100 mg/kg i.v.) significantly diminished the ischemia-reperfusion-induced release of all these enzymes. This demonstrates that cGMP possesses hepatoprotective properties. By immunohistochemistry, we observed, after 6 h of reperfusion, an increase in endothelial NOS-III immunoreactivity, particularly in the small arteries and sinusoids. This NOS-III accumulation in endothelial cells could protect the liver against ischemia-reperfusion by the local generation of NO probably via cGMP.  相似文献   

7.
8.
As observed with nitric oxide (NO), carbon monoxide (CO) binds and may activate soluble guanylate cyclase and increase cGMP levels in smooth muscle cells in vitro. Because inhaled NO (I(NO)) causes potent and sustained pulmonary vasodilation, we hypothesized that inhaled CO (I(CO)) may have similar effects on the perinatal lung. To determine whether I(CO) can lower pulmonary vascular resistance (PVR) during the perinatal period, we studied the effects of I(CO) on late-gestation fetal lambs. Catheters were placed in the main pulmonary artery, left pulmonary artery (LPA), aorta, and left atrium to measure pressure. An ultrasonic flow transducer was placed on the LPA to measure blood flow to the left lung. After baseline measurements, fetal lambs were mechanically ventilated with a hypoxic gas mixture (inspired O(2) fraction < 0.10) to maintain a constant fetal arterial PO(2). After 60 min (baseline), the lambs were treated with I(CO) [5-2,500 parts/million (ppm)]. Comparisons were made with I(NO) (5 and 20 ppm) and combined I(NO) (5 ppm) and I(CO) (100 and 2,500 ppm). We found that I(CO) did not alter left lung blood flow or PVR at any of the study doses. In contrast, low-dose I(NO) decreased PVR by 47% (P < 0.005). The combination of I(NO) and I(CO) did not enhance the vasodilator response to I(NO). To determine whether endogenous CO contributes to vascular tone in the fetal lung, zinc protoporphyrin IX, an inhibitor of heme oxygenase, was infused into the LPA in three lambs. Zinc protoporphyrin IX had no effect on baseline PVR, aortic pressure, or the pressure gradient across the ductus arteriosus. We conclude that I(CO) does not cause vasodilation in the near-term ovine transitional circulation, and endogenous CO does not contribute significantly to baseline pulmonary vascular tone or ductus arteriosus tone in the late-gestation ovine fetus.  相似文献   

9.
Nitric oxide (NO) is thought to play an important role in the regulation of neonatal pulmonary vasculature. It has been suggested that neonates with pulmonary hypertension have a defective NO pathway. Therefore, we measured in 1-day-old piglets exposed to hypoxia (fraction of inspired O(2) = 0.10) for 3 or 14 days to induce pulmonary hypertension 1) the activity of NO synthase (NOS) via conversion of L-arginine to L-citrulline and the concentration of the NO precursor L-arginine in isolated pulmonary vessels, 2) the vasodilator response to the NO donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the cGMP analog 8-bromo-cGMP in isolated perfused lungs, and 3) the production of cGMP in response to SIN-1 in isolated perfused lungs. After 3 days of exposure to hypoxia, endothelial NOS (eNOS) activity was unaffected, whereas, after 14 days of hypoxia, eNOS activity was decreased in the cytosolic fraction of pulmonary artery (P < 0.05) but not of pulmonary vein homogenates. Inducible NOS activity was decreased in the cytosolic fraction of pulmonary artery homogenates after both 3 (P < 0.05) and 14 (P < 0.05) days of hypoxia but was unchanged in pulmonary veins. Pulmonary artery levels of L-arginine were unaffected by hypoxic exposure. After 3 days of exposure to hypoxia, the reduction in the dilator response to SIN-1 (P < 0.05) coincided with a decrease in cGMP production (P < 0.005), suggesting that soluble guanylate cyclase activity may be altered. When the exposure was prolonged to 14 days, dilation to SIN-1 remained decreased (P < 0.05) and, although cGMP production normalized, the dilator response to 8-bromo-cGMP decreased (P < 0.05), suggesting that, after prolonged exposure to hypoxia, cGMP-dependent mechanisms may also be impaired. In conclusion, neonatal hypoxia-induced pulmonary hypertension is associated with multiple disruptions in the NO pathway.  相似文献   

10.
Continuous exposure to nitrovasodilators and nitric oxide induces tolerance to their vasodilator effects in vascular smooth muscle. This study was done to determine the role of cGMP-dependent protein kinase (PKG) in the development of tolerance to nitric oxide. Isolated fourth-generation pulmonary veins of newborn lambs were studied. Incubation of veins for 20 h with DETA NONOate (DETA NO; a stable nitric oxide donor) significantly reduced their relaxation response to the nitric oxide donor and to beta-phenyl-1,N2-etheno-8-bromo-cGMP (8-Br-PET-cGMP, a cell-permeable cGMP analog). Incubation with DETA NO significantly reduced PKG activity and protein and mRNA levels in the vessels. These effects were prevented by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase) and Rp-8-Br-PET-cGMPS (an inhibitor of PKG). A decrease in PKG protein and mRNA levels was also observed after continuous exposure to cGMP analogs. The PKG inhibitor abrogated these effects. The decrease in cGMP-mediated relaxation and in PKG activity caused by continuous exposure to DETA NO was not affected by KT-5720, an inhibitor of cAMP-dependent protein kinase. Prolonged exposure to 8-Br-cAMP (a cell-permeable cAMP analog) did not affect PKG protein level in the veins. These results suggest that continuous exposure to nitric oxide or cGMP downregulates PKG by a PKG-dependent mechanism. Such a negative feedback mechanism may contribute to the development of tolerance to nitric oxide in pulmonary veins of newborn lambs.  相似文献   

11.
This study examined the mechanism by which cGMP contributes to the vasodilator response to nitric oxide (NO) in rat middle cerebral arteries (MCA). Administration of a NO donor, diethylaminodiazen-1-ium-1,2-dioate (DEA-NONOate), or 8-bromo-cGMP (8-BrcGMP) increased the diameter of serotonin-preconstricted MCA by 79 +/- 3%. The response to DEA-NONOate, but not 8-BrcGMP, was attenuated by iberiotoxin (10(-7) M) or a 80 mM high-K(+) media, suggesting that activation of K(+) channels contributes to the vasodilator response to NO but not 8-BrcGMP. The effects of NO and cGMP on the vasoconstrictor response to Ca(2+) were also studied in MCA that were permeabilized with alpha-toxin and ionomycin. Elevations in bath Ca(2+) from 10(-8) to 10(-5) M decreased the diameter of permeabilized MCA by 76 +/- 5%. DEA-NONOate (10(-6) M) and 8-BrcGMP (10(-4) M) blunted this response by 60%. Inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one (10(-5) M) blocked the inhibitory effect of the NO donor, but not 8-BrcGMP, on Ca(2+)-induced vasoconstriction. 8-BrcGMP (10(-4) M) had no effect on intracellular Ca(2+) concentration ([Ca(2+)](i)) in control, serotonin-stimulated, or alpha-toxin- and ionomycin-permeabilized vascular smooth muscle cells isolated from the MCA. These results indicate that the vasodilator response to NO in rat MCA is mediated by activation of Ca(2+)-activated K(+) channels via a cGMP-independent pathway and that cGMP also contributes to the vasodilator response to NO by decreasing the contractile response to elevations in [Ca(2+)](i).  相似文献   

12.
Nitric oxide (NO) has been recently shown to modulate in vitro motility, viability, the acrosome reaction (AR), and metabolism of spermatozoa in various mammalian species, but the mechanism or mechanisms through which it influences sperm functions has not been clarified. In human capacitated spermatozoa, both the intracellular cGMP level and the percentage of AR-positive cells were significantly increased after 4 h of incubation with the NO donor, sodium nitroprusside (SNP). SNP-induced AR was significantly reduced in the presence of the soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ; this block was bypassed by adding 8-bromo-cGMP, a cell-permeating cGMP analogue, to the incubation medium. Finally, Rp-8-Br-cGMPS and Rp-8-pCPT-cGMPS, two inhibitors of the cGMP-dependent protein kinases (PKGs), inhibited the SNP-induced AR. Furthermore, SNP-induced AR did not occur in Ca2+ -free medium or in the presence of the protein kinase C (PKC) inhibitor, calphostin C. This study suggests that the AR-inducing effect of exogenous NO on capacitated human spermatozoa is accomplished via stimulation of an NO-sensitive sGC, cGMP synthesis, and PKG activation. In this effect the activation of PKC is also involved, and the presence of extracellular Ca2+ is required.  相似文献   

13.
Nitric oxide decreases lung liquid production in fetal lambs   总被引:1,自引:0,他引:1  
Cummings, James J. Nitric oxide decreases lung liquidproduction in fetal lambs. J. Appl.Physiol. 83(5): 1538-1544, 1997.To examine theeffect of nitric oxide on fetal lung liquid production, I measured lungliquid production in fetal sheep at 130 ± 5 days gestation (range122-137 days) before and after intrapulmonary instillation ofnitric oxide. Thirty-one studies were done in which net lung luminalliquid production (Jv) was measured by plotting the change in lung luminal liquid concentration ofradiolabeled albumin, an impermeant tracer that was mixed into the lungliquid at the start of each study. To see whether changes inJvmight be associated with changes in pulmonary hemodynamics, pulmonary and systemic pressures were measured and left pulmonary arterial flowwas measured by an ultrasonic Doppler flow probe. Variables weremeasured during a 1- to 2-h control period and for 4 h after a smallbolus of isotonic saline saturated with nitric oxide gas (10 or 100%)was instilled into the lung liquid. Control (saline) instillations(n = 6) caused no change in anyvariable over 6 h. Nitric oxide instillation significantly decreasedJv and increased pulmonary blood flow;these effects were sustained for 1-2 h. There was also asignificant but transient decrease in pulmonary arterial pressure. Thusintrapulmonary nitric oxide causes a significant decrease in lungliquid and is associated with a decrease in pulmonary vascularresistance. In a separate series of experiments either amiloride orbenzamil, which blocks Na+transport, was mixed into the lung liquid before nitric oxide instillation; still, there was a similar reduction in lung liquid production. Thus the reduction in lung liquid secretion caused bynitric oxide does not appear to depend on apicalNa+ efflux.

  相似文献   

14.
We have shown that endogenous nitrogen oxides (NOx) modulate excitation-contraction coupling in diaphragm. Because cyclic GMP (cGMP) is a second messenger for nitric oxide (NO) inhibition of smooth muscle contraction, we rested the hypothesis that NO acts via cGMP in diaphragm. Fiber bundles from rat diaphragm were studied in vitro. Immunohistochemical analysis using a cGMP-specific monoclonal antibody confirmed the presence of cGMP in the subsarcolemmal region, near nitric oxide synthase (NOS). cGMP measured by ELISA in control muscle (0.27 pmol/mg +/- 0.01 SE) was significantly increased by the NO donor S-nitroso-N-acetylcysteine 1 mM (0.55+/-0.05; N = 6; P < 0.001). Contractile studies showed that the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NNA) 10 mM increased submaximal (40 Hz) tetanic force (P < 0.0001). L-NNA effects were exaggerated by the guanylate cyclase inhibitor LY83583 5-10 microM; force at 40 Hz was increased (P < 0.001). L-NNA effects were partially reversed by 8-bromo-cGMP 1 mM (8-Br-GMP; a cell-permeable cGMP analogue; P < 0.0001) or dipyridamole 10 microM (DPM; a phosphodiesterase inhibitor; P < 0.0001). 8-Br-GMP and DPM produced more-complete L-NNA reversal in combination (P < 0.0001). We conclude that cGMP functions as a second messenger by which NO inhibits diaphragm contraction.  相似文献   

15.
Baseline function and signal transduction are depressed in hearts with hypertrophic failure. We tested the hypothesis that the effects of cGMP and its interaction with cAMP would be reduced in cardiac myocytes from hypertrophic failing hearts. Ventricular myocytes were isolated from control dogs, dogs with aortic valve stenosis hypertrophy, and dogs with pacing hypertrophic failure. Myocyte function was measured using a video edge detector. Cell contraction data were obtained at baseline, with 8-bromo-cGMP (10(-7), 10(-6), and 10(-5) M), with erythro-9-(2-hydroxy-3-nonyl)adenine [EHNA; a cAMP phosphodiesterase (PDE(2)) inhibitor] plus 8-bromo-cGMP, or milrinone (a PDE(3) inhibitor) plus 8-bromo-cGMP. Baseline percent shortening and maximal rates of shortening (R(max)) and relaxation were slightly reduced in hypertrophic myocytes and were significantly lower in failing myocytes (R(max): control dogs, 95.3 +/- 17.3; hypertrophy dogs, 88.2 +/- 5.5; failure dogs, 53.2 +/- 6.4 mum/s). 8-Bromo-cGMP dose dependently reduced myocyte function in all groups. However, EHNA (10(-6) M) and milrinone (10(-6) M) significantly reduced the negative effects of cGMP on cell contractility in control and hypertrophy but not in failing myocytes (R(max) for control dogs: cGMP, -46%; +EHNA, -21%; +milrinone, -19%; for hypertrophy dogs: cGMP, -40%; +EHNA, -13%; +milrinone, -20%; for failure dogs: cGMP, -40%; +EHNA, -29%; +milrinone, -32%). Both combinations of EHNA-cGMP and milrinone-cGMP significantly increased intracellular cAMP in control, hypertrophic, and failing myocytes. These data indicated that the cGMP signaling pathway was preserved in hypertrophic failing cardiac myocytes. However, the interaction of cGMP with the cAMP signaling pathway was impaired in these failing myocytes.  相似文献   

16.
This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor l-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulates MAP kinase and NF-κB pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by l-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.  相似文献   

17.
The hypothesis was addressed that CO-induced cerebral vasodilation requires a permissive cGMP signal that can be produced by nitric oxide (NO). Anesthetized piglets were implanted with cranial windows for measurement of pial arteriolar responses to stimuli. Pial arterioles dilated in response to isoproterenol (Iso), sodium nitroprusside (SNP), and CO or the CO-releasing molecule Mn2(CO)10 [dimanganese decacarbonyl (DMDC)]. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, decreased cerebrospinal fluid (CSF) cGMP and selectively inhibited dilations to SNP and DMDC without affecting the dilation to Iso. However, DMDC did not cause an increase in cortical periarachnoid CSF cGMP concentration. cGMP clamp with a threshold dilator level of 8-bromo-cGMP (10(-4) M) and ODQ restored the dilation to DMDC that had been blocked by ODQ alone. Under these conditions, cGMP was present but could not increase. Inhibition of the pial arteriolar dilation to glutamate by N-nitro-l-arginine, which blocks NO synthase, was similar to that by heme oxygenase inhibitors, which block endogenous CO production. The dilation to glutamate, similar to dilation to DMDC, was partially restored by 8-bromo-cGMP and completely restored by SNP (5 x 10(-7) M). These data suggest that the permissive role of NO in CO- and glutamate-induced vasodilation involves maintaining the minimum necessary cellular level of cGMP to allow CO to cause dilation independently of increasing cGMP.  相似文献   

18.
The effect of the nitric oxide (NO) donor sodium nitroprusside (SNP) on both [Ca(2+)](i)and mechanical activity was studied in the rat isolated pulmonary artery (RPA). In freshly isolated myocytes loaded with 1 microM indo-lacetoxymethyl ester for 30 min, short (40-60 s) application of ATP (100 microM) or ET-1 (0.1 microM) induced 3-6 cyclic rises in [Ca(2+)](i)(Ca-oscillations) of decreasing amplitude. Preincubation of cells with SNP (10-250 microM) for 10 min had no effect on the resting [Ca(2+)](i)value, but progressively abolished the oscillations. A similar effect was obtained with 8-bromo-cGMP (100-500 microM). SNP (0.001-100 microM) concentration-dependently relaxed ATP (10 mM, n = 4) and ET-1 (0.1 microM, n = 4)-precontracted RPA. 1H-[1,2,4]oxadiazolol [4,3,-a]quinoxalin-1-one (ODQ, 10 microM), a potent inhibitor of the cytosolic guanylyl cyclase, fully reversed the effect of SNP on ATP-induced [Ca(2+)](i)oscillations as well as on ATP-precontracted RPA. In contrast, N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H8, 10 microM), a potent inhibitor of cGMP-dependent protein kinase (PKG), did not alter the effect of SNP. Caffeine (5 mM) induced only one transient [Ca(2+)](i)-increase (n = 24), the amplitude of which was altered neither by SNP nor by 8-bromo-cGMP. Our results show that the relaxing effect of NO in RPA is related, at least in part, to its action on the Ca-signalling pathway. NO interacts with inositol trisphosphate pathway without interacting with the ryanodine-sensitive receptor. Finally, the effect of NO involves an increase in cGMP but appears independent of activation of PKG.  相似文献   

19.
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10–400 μM) or SNAP (50–400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs’ (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.  相似文献   

20.
Previous studies have shown that a shift in blood flow away from edematous regions does not occur until the alveoli contain liquid. The present experiments were designed to examine the separate effect of air space liquid, air space plus interstitial liquid, and reduced lung volume on blood flow. We found that reduced lung volume was not associated with significant changes in blood flow and that no systematic change in blood flow occurred when alveoli were filled with isosmotic liquid (autologous plasma). However, when hyposmotic liquid (dilute plasma) was instilled so that both the air space and the alveolar wall interstitial space were filled, blood flow was systematically reduced. This suggested that interstitial liquid was responsible raising vascular resistance in these experiments and that it might also be important in raising local vascular resistance in pulmonary edema. This latter hypothesis was tested in isolated perfused lobes where rapid freezing and quantitative histology showed that the number of open capillaries was significantly reduced in the liquid-filled alveoli (P less than 0.001). These observations suggest that interstitial pressure rises in pulmonary edema with the result that the transmural pressure of the alveolar vessels falls and vascular resistance is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号