首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bardet-Biedl syndrome is a genetically and clinically heterogeneous disorder caused by mutations in at least seven loci (BBS1-7), five of which are cloned (BBS1, BBS2, BBS4, BBS6, and BBS7). Genetic and mutational analyses have indicated that, in some families, a combination of three mutant alleles at two loci (triallelic inheritance) is necessary for pathogenesis. To date, four of the five known BBS loci have been implicated in this mode of oligogenic disease transmission. We present a comprehensive analysis of the spectrum, distribution, and involvement in non-Mendelian trait transmission of mutant alleles in BBS1, the most common BBS locus. Analyses of 259 independent families segregating a BBS phenotype indicate that BBS1 participates in complex inheritance and that, in different families, mutations in BBS1 can interact genetically with mutations at each of the other known BBS genes, as well as at unknown loci, to cause the phenotype. Consistent with this model, we identified homozygous M390R alleles, the most frequent BBS1 mutation, in asymptomatic individuals in two families. Moreover, our statistical analyses indicate that the prevalence of the M390R allele in the general population is consistent with an oligogenic rather than a recessive model of disease transmission. The distribution of BBS oligogenic alleles also indicates that all BBS loci might interact genetically with each other, but some genes, especially BBS2 and BBS6, are more likely to participate in triallelic inheritance, suggesting a variable ability of the BBS proteins to interact genetically with each other.  相似文献   

2.
McKusick-Kaufman syndrome comprises hydrometrocolpos, polydactyly, and congenital heart defects and overlaps with Bardet-Biedl syndrome, comprising retinitis pigmentosa, polydactyly, obesity, mental retardation, and renal and genital anomalies. Bardet-Biedl syndrome is genetically heterogeneous with three cloned genes ( BBS2, BBS4, and MKKS) and at least three other known loci ( BBS1, BBS3, and BBS5). Both McKusick-Kaufman syndrome and Bardet-Biedl syndrome are inherited in an autosomal recessive pattern, and both syndromes are caused by mutations in the MKKS gene. However, mutations in MKKS are found in only 4%-11% of unselected Bardet-Biedl syndrome patients. We hypothesized that an analysis of patients with atypical Bardet-Biedl syndrome and McKusick-Kaufman syndrome (Group I; 15 probands) and patients with Bardet-Biedl syndrome who had linkage results inconsistent with linkage to the other loci (Group II; 12 probands) could increase the MKKS mutation yield. Both mutant alleles were identified in only two families in Group II. Single (heterozygous) sequence variations were found in three Group I families and in two Group II families. Combining these results with previously published data showed that only one mutant allele was detected in nearly half of all patients screened to date, suggesting that unusual mutational mechanisms or patterns of inheritance may be involved. However, sequencing of the BBS2 gene in these patients did not provide any evidence of digenic or "triallelic" inheritance. The frequency of detected mutations in MKKS in Group II patients was 24%, i.e., six times higher than the published rate for unselected BBS patients, suggesting that small-scale linkage analyses may be useful in suitable families.  相似文献   

3.
Bardet-Biedl syndrome (BBS) is a genetic disorder with the primary features of obesity, pigmentary retinopathy, polydactyly, renal malformations, mental retardation, and hypogenitalism. Patients with BBS are also at increased risk for diabetes mellitus, hypertension, and congenital heart disease. BBS is known to map to at least six loci: 11q13 (BBS1), 16q21 (BBS2), 3p13-p12 (BBS3), 15q22.3-q23 (BBS4), 2q31 (BBS5), and 20p12 (BBS6). Although these loci were all mapped on the basis of an autosomal recessive mode of inheritance, it has recently been suggested-on the basis of mutation analysis of the identified BBS2, BBS4, and BBS6 genes-that BBS displays a complex mode of inheritance in which, in some families, three mutations at two loci are necessary to manifest the disease phenotype. We recently identified BBS1, the gene most commonly involved in Bardet-Biedl syndrome. The identification of this gene allows for further evaluation of complex inheritance. In the present study we evaluate the involvement of the BBS1 gene in a cohort of 129 probands with BBS and report 10 novel BBS1 mutations. We demonstrate that a common BBS1 missense mutation accounts for approximately 80% of all BBS1 mutations and is found on a similar genetic background across populations. We show that the BBS1 gene is highly conserved between mice and humans. Finally, we demonstrate that BBS1 is inherited in an autosomal recessive manner and is rarely, if ever, involved in complex inheritance.  相似文献   

4.
Bardet-Biedl syndrome (BBS) is a multisystemic disorder characterized by postaxial polydactyly, progressive retinal dystrophy, obesity, hypogonadism, renal dysfunction, and learning difficulty. Other manifestations include diabetes mellitus, heart disease, hepatic fibrosis, and neurological features. The condition is genetically heterogeneous, and eight genes (BBS1-BBS8) have been identified to date. A mutation of the BBS1 gene on chromosome 11q13 is observed in 30%-40% of BBS cases. In addition, a complex triallelic inheritance has been established in this disorder--that is, in some families, three mutations at two BBS loci are necessary for the disease to be expressed. The clinical features of BBS that can be observed at birth are polydactyly, kidney anomaly, hepatic fibrosis, and genital and heart malformations. Interestingly, polydactyly, cystic kidneys, and liver anomalies (hepatic fibrosis with bile-duct proliferation) are also observed in Meckel syndrome, along with occipital encephalocele. Therefore, we decided to sequence the eight BBS genes in a series of 13 antenatal cases presenting with cystic kidneys and polydactyly and/or hepatic fibrosis but no encephalocele. These fetuses were mostly diagnosed as having Meckel or "Meckel-like" syndrome. In six cases, we identified a recessive mutation in a BBS gene (three in BBS2, two in BBS4, and one in BBS6). We found a heterozygous BBS6 mutation in three additional cases. No BBS1, BBS3, BBS5, BBS7, or BBS8 mutations were identified in our series. These results suggest that the antenatal presentation of BBS may mimic Meckel syndrome.  相似文献   

5.
Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder characterized primarily by obesity, polydactyly, retinal dystrophy, and renal disease. The significant genetic and clinical heterogeneity of this condition have substantially hindered efforts to positionally clone the numerous BBS genes, because the majority of available pedigrees are small and the disorder cannot be assigned to any of the six known BBS loci. Consequently, the delineation of critical BBS intervals, which would accelerate the discovery of the underlying genetic defect(s), becomes difficult, especially for loci with minor contributions to the syndrome. We have collected a cohort of 163 pedigrees from diverse ethnic backgrounds and have evaluated them for mutations in the recently discovered BBS6 gene (MKKS) on chromosome 20 and for potential assignment of the disorder to any of the other known BBS loci in the human genome. Using a combination of mutational and haplotype analysis, we describe the spectrum of BBS6 alterations that are likely to be pathogenic; propose substantially reduced critical intervals for BBS2, BBS3, and BBS5; and present evidence for the existence of at least one more BBS locus. Our data also suggest that BBS6 is a minor contributor to the syndrome and that some BBS6 alleles may act in conjunction with mutations at other BBS loci to cause or modify the BBS phenotype.  相似文献   

6.
Bardet-Biedl syndrome (BBS) is primarily an autosomal recessive ciliopathy characterized by progressive retinal degeneration, obesity, cognitive impairment, polydactyly, and kidney anomalies. The disorder is genetically heterogeneous, with 11 BBS genes identified to date, which account for ~70% of affected families. We have combined single-nucleotide-polymorphism array homozygosity mapping with in silico analysis to identify a new BBS gene, BBS12. Patients from two Gypsy families were homozygous and haploidentical in a 6-Mb region of chromosome 4q27. FLJ35630 was selected as a candidate gene, because it was predicted to encode a protein with similarity to members of the type II chaperonin superfamily, which includes BBS6 and BBS10. We found pathogenic mutations in both Gypsy families, as well as in 14 other families of various ethnic backgrounds, indicating that BBS12 accounts for approximately 5% of all BBS cases. BBS12 is vertebrate specific and, together with BBS6 and BBS10, defines a novel branch of the type II chaperonin superfamily. These three genes are characterized by unusually rapid evolution and are likely to perform ciliary functions specific to vertebrates that are important in the pathophysiology of the syndrome, and together they account for about one-third of the total BBS mutational load. Consistent with this notion, suppression of each family member in zebrafish yielded gastrulation-movement defects characteristic of other BBS morphants, whereas simultaneous suppression of all three members resulted in severely affected embryos, possibly hinting at partial functional redundancy within this protein family.  相似文献   

7.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous disorder, the primary features of which include obesity, retinal dystrophy, polydactyly, hypogenitalism, learning difficulties, and renal malformations. Conventional linkage and positional cloning have led to the mapping of six BBS loci in the human genome, four of which (BBS1, BBS2, BBS4, and BBS6) have been cloned. Despite these advances, the protein sequences of the known BBS genes have provided little or no insight into their function. To delineate functionally important regions in BBS2, we performed phylogenetic and genomic studies in which we used the human and zebrafish BBS2 peptide sequences to search dbEST and the translation of the draft human genome. We identified two novel genes that we initially named "BBS2L1" and "BBS2L2" and that exhibit modest similarity with two discrete, overlapping regions of BBS2. In the present study, we demonstrate that BBS2L1 mutations cause BBS, thereby defining a novel locus for this syndrome, BBS7, whereas BBS2L2 has been shown independently to be BBS1. The motif-based identification of a novel BBS locus has enabled us to define a potential functional domain that is present in three of the five known BBS proteins and, therefore, is likely to be important in the pathogenesis of this complex syndrome.  相似文献   

8.
Bardet–Biedl syndrome (BBS), an emblematic disease in the rapidly evolving field of ciliopathies, is characterized by pleiotropic clinical features and extensive genetic heterogeneity. To date, 14 BBS genes have been identified, 3 of which have been found mutated only in a single BBS family each (BBS11/TRIM32, BBS13/MKS1 and BBS14/MKS4/NPHP6). Previous reports of systematic mutation detection in large cohorts of BBS families (n > 90) have dealt only with a single gene, or at most small subsets of the known BBS genes. Here we report extensive analysis of a cohort of 174 BBS families for 12/14 genes, leading to the identification of 28 novel mutations. Two pathogenic mutations in a single gene have been found in 117 families, and a single heterozygous mutation in 17 families (of which 8 involve the BBS1 recurrent mutation, M390R). We confirm that BBS1 and BBS10 are the most frequently mutated genes, followed by BBS12. No mutations have been found in BBS11/TRIM32, the identification of which as a BBS gene only relies on a single missense mutation in a single consanguineous family. While a third variant allele has been observed in a few families, they are in most cases missenses of uncertain pathogenicity, contrasting with the type of mutations observed as two alleles in a single gene. We discuss the various strategies for diagnostic mutation detection, including homozygosity mapping and targeted arrays for the detection of previously reported mutations.  相似文献   

9.
Homozygosity for a recurrent 290 kb deletion of NPHP1 is the most frequent cause of isolated nephronophthisis (NPHP) in humans. A deletion of the same genomic interval has also been detected in individuals with Joubert syndrome (JBTS), and in the mouse, Nphp1 interacts genetically with Ahi1, a known JBTS locus. Given these observations, we investigated the contribution of NPHP1 in Bardet-Biedl syndrome (BBS), a ciliopathy of intermediate severity. By using a combination of array-comparative genomic hybridization, TaqMan copy number assays, and sequencing, we studied 200 families affected by BBS. We report a homozygous NPHP1 deletion CNV in a family with classical BBS that is transmitted with autosomal-recessive inheritance. Further, we identified heterozygous NPHP1 deletions in two more unrelated persons with BBS who bear primary mutations at another BBS locus. In parallel, we identified five families harboring an SNV in NPHP1 resulting in a conserved missense change, c.14G>T (p.Arg5Leu), that is enriched in our Hispanic pedigrees; in each case, affected individuals carried additional bona fide pathogenic alleles in another BBS gene. In vivo functional modeling in zebrafish embryos demonstrated that c.14G>T is a loss-of-function variant, and suppression of nphp1 in concert with each of the primary BBS loci found in our NPHP1-positive pedigrees exacerbated the severity of the phenotype. These results suggest that NPHP1 mutations are probably rare primary causes of BBS that contribute to the mutational burden of the disorder.  相似文献   

10.
Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.  相似文献   

11.
W Champness  P Riggle  T Adamidis  P Vandervere 《Gene》1992,115(1-2):55-60
To define genetic elements that regulate antibiotic synthesis, we screened for mutations that visibly blocked synthesis of Streptomyces coelicolor's two pigmented antibiotics and found mutant strains in which all four antibiotics were blocked. The responsible mutations defined two loci, absA and absB. Two additional approaches to defining genes have been taken: isolation of cloned genes with a dominant negative effect on antibiotic synthesis and isolation of genes which, in multicopy, can compensate for specific mutational blocks. These genes apparently function in a global regulatory pathway (or network) for control of antibiotic synthesis.  相似文献   

12.
Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive disorder; major phenotypic findings include dysmorphic extremities, retinal dystrophy, obesity, male hypogenitalism, and renal anomalies. In the majority of northern European families with BBS, the syndrome is linked to a 26-cM region on chromosome 11q13. However, the finding, so far, of five distinct BBS loci (BBS1, 1q; BBS2, 16q; BBS3, 3p; BBS4, 15q; BBS5, 2q) has hampered the positional cloning of these genes. We use linkage disequilibrium (LD) mapping in an isolated founder population in Newfoundland to significantly reduce the BBS1 critical region. Extensive haplotyping in several unrelated BBS families of English descent revealed that the affected members were homozygous for overlapping portions of a rare, disease-associated ancestral haplotype on chromosome 11q13. The LD data suggest that the BBS1 gene lies in a 1-Mb, sequence-ready region on chromosome 11q13, which should enable its identification.  相似文献   

13.
ABSTRACT: BACKGROUND: Hereditary hearing loss is one of the most common heterogeneous disorders, and genetic variants that can cause hearing loss have been identified in over fifty genes. Most of these hearing loss genes have been detected using classical genetic methods, typically starting with linkage analysis in large families with hereditary hearing loss. However, these classical strategies are not well suited for mutation analysis in smaller families who have insufficient genetic information. METHODS: Eighty known hearing loss genes were selected and simultaneously sequenced by targeted next-generation sequencing (NGS) in 8 Korean families with autosomal dominant non-syndromic sensorineural hearing loss. RESULTS: Five mutations in known hearing loss genes, including 1 nonsense and 4 missense mutations, were identified in 5 different genes (ACTG1, MYO1F, DIAPH1, POU4F3 and EYA4), and the genotypes for these mutations were consistent with the autosomal dominant inheritance pattern of hearing loss in each family. No mutational hot-spots were revealed in these Korean families. CONCLUSION: Targeted NGS allowed for the detection of pathogenic mutations in affected individuals who were not candidates for classical genetic studies. This report is the first documenting the effective use of an NGS technique to detect pathogenic mutations that underlie hearing loss in an East Asian population. Using this NGS technique to establish a database of common mutations in Korean patients with hearing loss and further data accumulation will contribute to the early diagnosis and fundamental therapies for hereditary hearing loss.  相似文献   

14.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS loci have been mapped, and seven genes have been identified. BBS3 was previously mapped to chromosome 3 by linkage analysis in a large Israeli Bedouin kindred. The rarity of other families mapping to the BBS3 locus has made it difficult to narrow the disease interval sufficiently to identify the gene by positional cloning. We hypothesized that the genomes of model organisms that contained the orthologues to known BBS genes would also likely contain a BBS3 orthologue. Therefore, comparative genomic analysis was performed to prioritize BBS candidate genes for mutation screening. Known BBS proteins were compared with the translated genomes of model organisms to identify a subset of organisms in which these proteins were conserved. By including multiple organisms that have relatively small genome sizes in the analysis, the number of candidate genes was reduced, and a few genes mapping to the BBS3 interval emerged as the best candidates for this disorder. One of these genes, ADP-ribosylation factor-like 6 (ARL6), contains a homozygous stop mutation that segregates completely with the disease in the Bedouin kindred originally used to map the BBS3 locus, identifying this gene as the BBS3 gene. These data illustrate the power of comparative genomic analysis for the study of human disease and identifies a novel BBS gene.  相似文献   

15.
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy and complex brain and eye abnormalities. A similar combination of symptoms is presented by two other human diseases, muscle-eye-brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD). Although the genes underlying FCMD (Fukutin) and MEB (POMGnT1) have been cloned, loci for WWS have remained elusive. The protein products of POMGnT1 and Fukutin have both been implicated in protein glycosylation. To unravel the genetic basis of WWS, we first performed a genomewide linkage analysis in 10 consanguineous families with WWS. The results indicated the existence of at least three WWS loci. Subsequently, we adopted a candidate-gene approach in combination with homozygosity mapping in 15 consanguineous families with WWS. Candidate genes were selected on the basis of the role of the FCMD and MEB genes. Since POMGnT1 encodes an O-mannoside N-acetylglucosaminyltransferase, we analyzed the possible implication of O-mannosyl glycan synthesis in WWS. Analysis of the locus for O-mannosyltransferase 1 (POMT1) revealed homozygosity in 5 of 15 families. Sequencing of the POMT1 gene revealed mutations in 6 of the 30 unrelated patients with WWS. Of the five mutations identified, two are nonsense mutations, two are frameshift mutations, and one is a missense mutation. Immunohistochemical analysis of muscle from patients with POMT1 mutations corroborated the O-mannosylation defect, as judged by the absence of glycosylation of alpha-dystroglycan. The implication of O-mannosylation in MEB and WWS suggests new lines of study in understanding the molecular basis of neuronal migration.  相似文献   

16.
《Genomics》1999,55(1):2-9
Bardet–Biedl syndrome (BBS) is a rare, autosomal recessive disease characterized by retinal dystrophy, renal structural abnormalities, obesity, dysmorphic extremities, and hypogenitalism in males. BBS is genetically heterogeneous with four known loci: BBS1 (11q), BBS2 (16q), BBS3 (3p), and BBS4 (15q). The prevalence of BBS in Newfoundland is approximately 10-fold greater than in Switzerland (1:160,000) and similar to the prevalence among the Bedouin of Kuwait (1:13,500). A population-based genetic survey was performed on 17 BBS families from the island portion of the province of Newfoundland, a comparatively isolated region of Canada. The families in the study had a total of 36 well-documented, affected individuals with 12 families having 2 or more affected individuals. Linkage at each of the four known loci was tested with two-point linkage and haplotype analysis. Three of the 17 kindreds showed linkage to 11q, 1 to 16q, and 1 to 3p. The latter is the first BBS3 family identified in a population of northern European descent. Six families remain undetermined because of poor pedigree structure or inconclusive haplotype analyses. Six families were excluded from all four known BBS loci, indicating that there is at least a fifth BBS locus (BBS5).  相似文献   

17.
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous recessive disease characterized primarily by atypical retinitis pigmentosa, obesity, polydactyly, hypogenitalism, and mental retardation. Despite the presence of at least five loci in the human genome, on chromosomes 2q, 3p, 11q, 15q and 16q, as many as 50% of the mutations appear to map to the BBS1 locus on 11q13. The recessive mode of inheritance and the genetic heterogeneity of the syndrome, as well as the inability to distinguish between different genetic loci by phenotypic analyses, have hindered efforts to delineate the 11q13 region as a first step toward cloning the mutated gene. To circumvent these difficulties, we collected a large number of BBS pedigrees of primarily North American and European origin and performed genetic analysis, using microsatellites from all known BBS genomic regions. Heterogeneity analysis established a 40.5% contribution of the 11q13 locus to BBS, and haplotype construction on 11q-linked pedigrees revealed several informative recombinants, defining the BBS1 critical interval between D11S4205 and D11S913, a genetic distance of 2.9 cM, equivalent to approximately 2.6 Mb. Loss of identity by descent in two consanguineous pedigrees was also observed in the region, potentially refining the region to 1.8 Mb between D11S1883 and D11S4944. The identification of multiple recombinants at the same position forms the basis for physical mapping efforts, coupled with mutation analysis of candidate genes, to identify the gene for BBS1.  相似文献   

18.
19.
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change.  相似文献   

20.
Two common restriction fragment length polymorphisms detected with cloned gene probes for apolipoprotein CII (apo CII) have been used to study the inheritance of the gene in families segregating for loci on chromosome 19. Lod scores for APOC2 with the gene for complement component 3 (C3) exclude close linkage and give a maximum at a male recombination fraction of 0.25-0.30. Lod scores for APOC2 and FHC, the gene causing familial hypercholesterolaemia, are negative in males and suggest the genes may not be linked. However, it appears that APOC2 may be closely linked to the blood group loci Lutheran (Lu) and Secretor (Se), and probably less closely linked to Lewis (Le). These data are consistent with the gene order: FHC-----C3-----(Lu, Se, APOC2)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号